UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Structural and economic evaluation of self-anchored discontinuous hybrid cable bridges Sauer, Devin James


The self-anchored discontinuous hybrid cable bridge (SDHCB) is a novel type of bridge system which has the potential to overcome many of the deficiencies of conventional cable bridge structures while preserving their advantages. To date, research on the system is extremely limited. Accordingly, this thesis examines the structural and economic attributes of the system, as well its constructability. These areas of research are vital in evaluating the utility of the system and in advancing its development. The structural attributes of SDHCBs were studied in this thesis using a systematic approach. First, the behaviour of each of the two basic cable types found in hybrid cable bridges was studied under a wide range of parameters. Then, starting with a bare model of a SDHCB, a series of analyses was performed while progressively expanding the model so that the influence of various parameters and bridge components could be isolated, and accurately assessed. The model parameters were further refined through a cost analysis. Thereafter, upon reaching a complete and detailed model, the influence of various structural parameters was re-assessed, the structural benefits of employing various supplemental design components were appraised, and the constructability of the system was addressed. This work is significant in that it has provided a highly generalized and robust model of a SDHCB. Using this model, it is possible to ascertain how various design parameters such as geometric factors, material properties, and loading conditions affect the structural behaviour, cost, and constructability of the system. Many insights were also obtained from this research which led to the formation of a recommended, universal, design space for the system. In addition, the practicality and adaptability of the system were demonstrated through the development of several innovative construction schemes which aim to reduce construction duration and costs through the creation of multiple work fronts and the elimination of large temporary works.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International