UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Numerical modeling of seismic performance of light-frame wood buildings Mulder, Marisa J.

Abstract

Light-frame wood structures are the most prevalent construction type in North America, representing over 90% of the residential building stock. Many of these buildings were built prior to the adoption of seismic engineering design practices and thus may be vulnerable in a seismic event. The primary objective of the research is to examine the use of numerical models to predict the seismic behaviour of light-frame wood structures. Models for (i) a full-scale two-storey house, (ii) a full-scale classroom, and (iii) a two-storey school block were created in light-frame wood non-linear analysis packages. The first two models were validated with full-scale shake table tests. The effect of sheathing type, nailing schedule, openings and ground motion characteristics on the seismic behavior of light-frame wood buildings were investigated. A three-dimensional model of a two-storey light-frame timber house with different sheathing configurations was calibrated using non-linear dynamic analysis to the full-scale experimental shake table results. The model of the test structures was able too predict the time-history response of the drift with reasonable accuracy. The contributions of the strength and stiffness from the openings and non-structural sheathing were included in the model. A detailed numerical model (each nail, framing member, hold-down and panel are modeled), as well as a global numerical model was used to predict the seismic behaviour of an additional dynamic shake table testing was also conducted on a full-scale classroom. The effect of openings, sheathing and ground motion duration was further investigated. Finally, the seismic performance of existing structures and the performance of several retrofit options was investigated with the validate modeling techniques using non-linear dynamic analysis of a typical school block built between 1950 – 1960 in Vancouver. The retrofit options met the target performance objectives.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International