- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Planetesimal growth through the accretion of small...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Planetesimal growth through the accretion of small solids Hughes, Anna
Abstract
The growth and migration of planetesimals in a young protoplanetary disk is fundamental to the planet formation process. However, in our modeling of early growth, there are a several processes that can inhibit smaller grains from growing to larger sizes, making growth beyond size scales of centimeters difficult. The observational data which are available ( e.g., relics from asteroids in our own solar system as well as gas lifetimes in other systems) suggest that early growth must be rapid. If a small number of 100-km-sized planetesimals do manage to form by some method such as streaming instability, then gas drag effects would enable such a body to efficiently accrete smaller solids from beyond its Hill sphere. This enhanced accretion cross-section, paired with dense gas and large populations of small solids enables a planet to grow at much faster rates. As the planetesimals accrete pebbles, they experience an additional angular momentum exchange, which could cause slow inward drift and a consequent back-reaction on growth rates. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes and disk conditions using a wind tunnel simulation. We also perform numerical analyses of planetesimal growth and drift rates for a range of distances from the star. The results of our models indicate that rapid growth of planeteismals under our assumed model must be at orbital distances inwards of 1 AU, and that at such distances centimeter-sized pebbles and larger are required for maximized accretion. We find that growth beyond 1 AU is possible under certain limited, optimized conditions.
Item Metadata
Title |
Planetesimal growth through the accretion of small solids
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2016
|
Description |
The growth and migration of planetesimals in a young protoplanetary disk is fundamental to the planet formation process. However, in our modeling of early growth, there are a several processes that can inhibit smaller grains from growing to larger sizes, making growth beyond size scales of centimeters difficult. The observational data which are available ( e.g., relics from asteroids in our own solar system as well as gas lifetimes in other systems) suggest that early growth must be rapid. If a small number of 100-km-sized planetesimals do manage to form by some method such as streaming instability, then gas drag effects would enable such a body to efficiently accrete smaller solids from beyond its Hill sphere. This enhanced accretion cross-section, paired with dense
gas and large populations of small solids enables a planet to grow at much faster rates. As the planetesimals accrete pebbles, they experience an additional angular momentum exchange, which could cause slow inward drift and a consequent back-reaction on growth rates. We present self-consistent hydrodynamic simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. We explore a range of particle sizes and disk conditions using a wind tunnel simulation. We also perform numerical analyses of planetesimal growth and drift rates for a range of distances from the star. The results of our models indicate that rapid growth of planeteismals under our assumed model must be at orbital distances inwards of 1 AU, and that at such distances centimeter-sized pebbles
and larger are required for maximized accretion. We find that growth beyond 1 AU is possible under certain limited, optimized conditions.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2016-08-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0308779
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2016-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International