UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Characterization of the disease pathogenesis of Schimke immuno-osseous dysplasia Morimoto, Marie

Abstract

Schimke immuno-osseous dysplasia (SIOD) is a rare autosomal recessive multisystemic disorder characterized by disproportionate short stature due to skeletal dysplasia, renal disease due to focal segmental glomerulosclerosis (FSGS), T-cell immunodeficiency, and vascular disease. SIOD is caused by mutations in the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1) gene, which encodes for a DNA annealing helicase with roles in DNA replication, DNA repair, and gene expression. Although SMARCAL1 functions to maintain genomic integrity, it is not known how SMARCAL1 deficiency leads to the various clinical features of SIOD. My aim was therefore to characterize the molecular pathogenesis of the dental, vascular, renal, and immune features. Given that SMARCAL1 has a role in modulating gene expression and that phenotypic changes are typically preceded by changes in gene expression, I hypothesized that SMARCAL1 deficiency pathologically alters the expression of key genes that lead to the clinical features of SIOD. To test this, SIOD patient tissues were studied using molecular biological analyses. With respect to vascular disease, an SIOD aorta had decreased expression of elastin, and both transcriptional and post-transcriptional mechanisms contributed to the elastin deficiency. Elastin is critical for the structural integrity of the arteries and its deficiency is a known cause of vascular disease. With respect to renal disease, SIOD glomeruli have increased expression and activation of the Wnt and Notch signaling pathways. Wnt and Notch signaling are required for kidney development and the postnatal reactivation of these pathways is an established cause of FSGS. With respect to immune disease, SIOD T cells have decreased mRNA and protein expression of interleukin 7 receptor alpha chain (IL7R). IL7R is critical for T-cell development and its deficiency is a known cause of T-cell immunodeficiency. In conclusion, the gene expression alterations detected are known causes of disease and differ among the tissues studied. These findings suggest that SMARCAL1 deficiency may cause each disease feature by tissue-specific gene expression changes. Further studies are required to define the mechanism of how SMARCAL1 deficiency alters the expression of these genes.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International