- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Investigation into bond strength between EDCC/masonry
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Investigation into bond strength between EDCC/masonry Yan, Yuan
Abstract
In order to apply Sprayable Eco-Friendly Ductile Cementitious Composites (EDCC) as a thin overlay material for masonry building upgrade, this study aims at understanding one of the key issues of repair: bond strength between old structure and the new repair overlay. Several influencing factors on bond strength were investigated, including repair thickness, fiber addition, substrate properties, curing age and environment. Bond strength was measured by tensile pull-off and friction-transfer tests. At the conclusion of the research, EDCC was able to achieve satisfactory bond strength provided sufficient penetrability into the substrate, even under field conditions and without curing. Fibers added into EDCC impact bond strength negatively, if they are oriented parallel to the interface as a result of manual casting or if there is a low fractal dimension of the substrate surface. Further, 56 days can be used as the maturity age of bond strength with EDCC overlay. In future applications, penetrability of EDCC overlays can be ensured through sufficient amount of superplasticizer or energy of casting. For example, EDCC with 150mm slump was able to satisfy standard bond strength requirement of concrete in the field, at the age of 45 days. Penetrability of EDCC overlay is of vital importance, since EDCC with low workability (0 slump) can’t achieve requirement of structural repair even under standard curing. To mitigate the negative effect of fiber addition on bond strength, higher substrate roughness and 3D fiber orientation can be of help, through proper surface roughness preparation and the use of spray methods (e.g., shotcrete) instead of hand application. For further study, it is suggested that measures should be taken to obtain more pure bond strength values for simplification of analysis. Also surface roughness variation and long term properties of interface are worth investigation, once proper substrates are chosen for lab research.
Item Metadata
Title |
Investigation into bond strength between EDCC/masonry
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2016
|
Description |
In order to apply Sprayable Eco-Friendly Ductile Cementitious Composites (EDCC) as a thin overlay material for masonry building upgrade, this study aims at understanding one of the key issues of repair: bond strength between old structure and the new repair overlay. Several influencing factors on bond strength were investigated, including repair thickness, fiber addition, substrate properties, curing age and environment. Bond strength was measured by tensile pull-off and friction-transfer tests. At the conclusion of the research, EDCC was able to achieve satisfactory bond strength provided sufficient penetrability into the substrate, even under field conditions and without curing. Fibers added into EDCC impact bond strength negatively, if they are oriented parallel to the interface as a result of manual casting or if there is a low fractal dimension of the substrate surface. Further, 56 days can be used as the maturity age of bond strength with EDCC overlay. In future applications, penetrability of EDCC overlays can be ensured through sufficient amount of superplasticizer or energy of casting. For example, EDCC with 150mm slump was able to satisfy standard bond strength requirement of concrete in the field, at the age of 45 days. Penetrability of EDCC overlay is of vital importance, since EDCC with low workability (0 slump) can’t achieve requirement of structural repair even under standard curing. To mitigate the negative effect of fiber addition on bond strength, higher substrate roughness and 3D fiber orientation can be of help, through proper surface roughness preparation and the use of spray methods (e.g., shotcrete) instead of hand application. For further study, it is suggested that measures should be taken to obtain more pure bond strength values for simplification of analysis. Also surface roughness variation and long term properties of interface are worth investigation, once proper substrates are chosen for lab research.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2016-05-24
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0303138
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2016-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International