UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The inertia operator and Hall algebra of algebraic stacks Ronagh, Pooya

Abstract

We view the inertia construction of algebraic stacks as an operator on the Grothendieck groups of various categories of algebraic stacks. We are interested in showing that the inertia operator is (locally finite and) diagonalizable over for instance the field of rational functions of the motivic class of the affine line q = [A¹]. This is proved for the Grothendieck group of Deligne-Mumford stacks and the category of quasi-split Artin stacks. Motivated by the quasi-splitness condition we then develop a theory of linear algebraic stacks and algebroids, and define a space of stack functions over a linear algebraic stack. We prove diagonalization of the semisimple inertia for the space of stack functions. A different family of operators is then defined that are closely related to the semisimple inertia. These operators are diagonalizable on the Grothendieck ring itself (i.e. without inverting polynomials in q) and their corresponding eigenvalue decompositions are used to define a graded structure on the Grothendieck ring. We then define the structure of a Hall algebra on the space of stack functions. The commutative and non-commutative products of the Hall algebra respect the graded structure defined above. Moreover, the two multiplications coincide on the associated graded algebra. This result provides a geometric way of defining a Lie subalgebra of virtually indecomposables. Finally, for any algebroid, an ε-element is defined and shown to be contained in the space of virtually indecomposables. This is a new approach to the theory of generalized Donaldson-Thomas invariants.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics