UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Wideband acoustic immittance : instrument, ethnicity, and gender specific normative data Jaffer, Sukaina


This study investigated whether wideband acoustic immittance (WAI) values differed significantly in a normal hearing young adult population based on gender, ethnicity, and instrument. Normative data collected from this study can be utilized to create a repository of norms for clinical use as suggested by consensus among researchers in the Eriksholm Workshop. Eighty normal hearing young adults (age 18-34) were recruited from the University of British Columbia to undergo WAI testing with two hand-held devices (Otostat Mimosa Acoustics and Titan Interacoustics) and two non-portable devices (Reflwin Interacoustics and Mimosa Acoustics HearID). Approximately twenty participants were recruited from each of the male, female, Caucasian and Chinese groups. It was found that Caucasians had significantly higher mean power absorbance (PA) in the low frequencies between 630 – 1250 Hz and the Chinese had significantly higher mean PA in the high frequencies from 5000 - 6300 Hz overall collapsed across all devices. When the effect of equivalent ear canal volume (ECV) was adjusted for, mean PA for females were significantly higher than males at high frequencies between 4000 – 6300 Hz depending on the device used and at 5000 Hz across all devices. Mean PA at peak pressure were significantly higher than ambient pressure between 250 – 2000 Hz and significantly lower between 3150 – 5000 Hz collapsed across all devices tested (ReflWin and Titan), genders, trials, ears, and ethnicities. Mean PA did vary slightly across some frequencies for the Interacoustics devices but not the Mimosa Acoustics devices between trials; however, the test-retest differences were no more than those observed across various studies of a normal hearing population and much smaller than the difference between normal and pathological ears indicating good reliability. Mean PA varied across frequencies between devices, but using HearID instrument specific data didn’t greatly improve the ability to distinguish the normal group from a sample with surgically confirmed otosclerosis obtained using the HearID system at 800 and 2000 Hz. It is advised that future investigations utilize gender, ethnicity, and instrument-specific data to determine whether these factors improve the sensitivity and specificity of identifying middle ear pathologies using a larger frequency bin for analysis.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International