- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Why visualization? : task abstraction for analysis...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Why visualization? : task abstraction for analysis and design Brehmer, Matthew Michael
Abstract
Why do people visualize data? People visualize data either to consume or produce information relevant to a domain-specific problem or interest. Visualization design and evaluation involves a mapping between domain problems or interests and appropriate visual encoding and interaction design choices. This mapping translates a domain-specific situation into abstract visualization tasks, which allows for succinct descriptions of tasks and task sequences in terms of why data is visualized, what dependencies a task might have in terms of input and output, and how the task is supported in terms of visual encoding and interaction design choices. Describing tasks in this way facilitates the comparison and cross-pollination of visualization design choices across application domains; the mapping also applies in reverse, whenever visualization researchers aim to contextualize novel visualization techniques. In this dissertation, we present multiple instances of visualization task abstraction, each integrating our proposed typology of abstract visualization tasks. We apply this typology as an analysis tool in an interview study of individuals who visualize dimensionally reduced data in different application domains, in a post-deployment field study evaluation of a visual analysis tool in the domain of investigative journalism, and in a visualization design study in the domain of energy management. In the interview study, we draw upon and demonstrate the descriptive power of our typology to classify five task sequences relating to visualizing dimensionally reduced data. This classification is intended to inform the design of new tools and techniques for visualizing this form of data. In the field study, we draw upon and demonstrate the descriptive and evaluative power of our typology to evaluate Overview, a visualization tool for investigating large text document collections. After analyzing its adoption by investigative journalists, we characterize two abstract tasks relating to document mining and present seven lessons relating to the design of visualization tools for document data. In the design study, we demonstrate the descriptive, evaluative, and generative power of our typology and identify matches and mismatches between visualization design choices and three abstract tasks relating to time series data. Finally, we reflect upon the impact of our task typology.
Item Metadata
Title |
Why visualization? : task abstraction for analysis and design
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2016
|
Description |
Why do people visualize data? People visualize data either to consume or produce information relevant to a domain-specific problem or interest. Visualization design and evaluation involves a mapping between domain problems or interests and appropriate visual encoding and interaction design choices. This mapping translates a domain-specific situation into abstract visualization tasks, which allows for succinct descriptions of tasks and task sequences in terms of why data is visualized, what dependencies a task might have in terms of input and output, and how the task is supported in terms of visual encoding and interaction design choices. Describing tasks in this way facilitates the comparison and cross-pollination of visualization design choices across application domains; the mapping also applies in reverse, whenever visualization researchers aim to contextualize novel visualization techniques. In this dissertation, we present multiple instances of visualization task abstraction, each integrating our proposed typology of abstract visualization tasks. We apply this typology as an analysis tool in an interview study of individuals who visualize dimensionally reduced data in different application domains, in a post-deployment field study evaluation of a visual analysis tool in the domain of investigative journalism, and in a visualization design study in the domain of energy management. In the interview study, we draw upon and demonstrate the descriptive power of our typology to classify five task sequences relating to visualizing dimensionally reduced data. This classification is intended to inform the design of new tools and techniques for visualizing this form of data. In the field study, we draw upon and demonstrate the descriptive and evaluative power of our typology to evaluate Overview, a visualization tool for investigating large text document collections. After analyzing its adoption by investigative journalists, we characterize two abstract tasks relating to document mining and present seven lessons relating to the design of visualization tools for document data. In the design study, we demonstrate the descriptive, evaluative, and generative power of our typology and identify matches and mismatches between visualization design choices and three abstract tasks relating to time series data. Finally, we reflect upon the impact of our task typology.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2016-04-12
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0228806
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2016-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NoDerivatives 4.0 International