UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Progesterone-binding modified hyperbranched polyglycerols : synthesis, characterization and biological assessment Alizadeh Noghani, Mahsa


Traumatic brain injury (TBI) has been proven as an established risk factor of Alzheimer’s disease (AD). Historically, progesterone (Pro) has been found to promote recovery from moderate TBI. However, the utility of this drug as a TBI treatment is severely hampered by its near total insolubility in water due to its hydrophobicity, which contributes to an inability to rapidly administer the drug after injury. The present work describes the synthesis, characterization, development and in vitro evaluation of nanoparticulate formulations of Pro for treatment of TBI. The nanoparticles developed for Pro consist of a library of hyperbranched polyglycerols (HPGs), which were hydrophobically modified with alkyl chains (C₆,₈,₁₀,₁₂,₁₄,₁₈) to enable loading the hydrophobic drug, and were further modified with MPEG chains to increase the solubility and stability of the formulations. Hydrophobically derivatized HPGs (HPG-Cn-MPEG), also known as dHPG(Cn), were characterized by GPC and NMR methods. Pro encapsulation by and release from the drug-binding pocket was determined through a reverse-phase UPLC method. Combination of binding, release and kinetic studies of the dHPG(Cn)/Pro library presented a relatively high number of drug molecules encapsulated, slow release and stable formulations. In vitro assays, including blood biocompatibility, cytotoxicity and cellular uptake, were performed on dHPG(Cn)/Pro. Blood biocompatibility studies demonstrated that the polymer-drug formulations do not cause significant changes in blood coagulation time (APTT assay), nor have they significant effects on red blood cell aggregation, lysis or platelet aggregation. There was no platelet activation observed in this study. Study of viability of human cortical microvascular endothelial cells and human astrocytoma cells in the presence of dHPG(Cn)/Pro demonstrated no toxicity. Studies on the same cells presented significant uptake with relatively even distribution of the formulation inside the cells. Further investigations indicated no degradation pathway for dHPG(Cn) over short periods of time (~ 8 h). Overall, the in vitro studies suggest that dHPG(Cn) are compatible and harmless to cells, suitable for carrying hydrophobic drugs and molecules, such as Pro, to the target tissues.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International