- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Single-cell analysis of hematopoietic stem cell identity...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Single-cell analysis of hematopoietic stem cell identity and behaviour Knapp, David Jorg Hans Fraser
Abstract
The concept of stem cell self-renewal was developed from clonal tracking of hematopoietic stem cell (HSC) divisions in vivo 50 years ago. However, protocols to expand these cells in vitro without loss of their stem cell properties have remained elusive. A number of factors contribute to this inability. Key among these is a lack of knowledge of the critical molecular characteristics that distinguish HSCs from hematopoietic progenitors as well as how the control of the fundamental biological programs of survival, division and differentiation are integrated in HSCs. Using a combination of single-cell tracking, transcriptomics, and in vivo readouts applied to highly enriched mouse HSCs, we now show that their survival, proliferation, and maintenance of stem cell properties are mechanistically dissociable. Discovery of a protocol that allows input numbers of functionally intact human HSC numbers to be maintained for 3 weeks in vitro using defined growth factors, was then leveraged to design single human HSC cell tracking and functional analyses. The results of these showed that for human HSC, as in the mouse model, survival, proliferation, and maintenance of stem cell status are mechanistically dissociable, and controlled in a combinatorial manner. We then developed a panel of mass cytometry detectors to enable >40 surface and intracellular proteins to be simultaneously measured at single cell resolution. Using this panel, we identified some of the signaling intermediates activated by growth factors that differentially control human HSC biological responses assessed in high-throughput assays. Correlation of the molecular properties, surface phenotypes and functional activities of CD34+ subsets have further revealed a surprising degree both of heterogeneity within each phenotype and overlap between phenotypes. In some cases, the results suggest a given phenotype contains distinct subsets and a broader scheme of differentiation pathways than suggested by current models of human hematopoietic cell differentiation. Finally, we identify CD33+ as a novel marker which demarcates the most potent human HSC within the current best phenotypic enrichment strategy. These results lay a foundation on which future HSC expansion strategies can be constructed, and have implications for the development of leukemia.
Item Metadata
Title |
Single-cell analysis of hematopoietic stem cell identity and behaviour
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2015
|
Description |
The concept of stem cell self-renewal was developed from clonal tracking of hematopoietic stem cell (HSC) divisions in vivo 50 years ago. However, protocols to expand these cells in vitro without loss of their stem cell properties have remained elusive. A number of factors contribute to this inability. Key among these is a lack of knowledge of the critical molecular characteristics that distinguish HSCs from hematopoietic progenitors as well as how the control of the fundamental biological programs of survival, division and differentiation are integrated in HSCs. Using a combination of single-cell tracking, transcriptomics, and in vivo readouts applied to highly enriched mouse HSCs, we now show that their survival, proliferation, and maintenance of stem cell properties are mechanistically dissociable. Discovery of a protocol that allows input numbers of functionally intact human HSC numbers to be maintained for 3 weeks in vitro using defined growth factors, was then leveraged to design single human HSC cell tracking and functional analyses. The results of these showed that for human HSC, as in the mouse model, survival, proliferation, and maintenance of stem cell status are mechanistically dissociable, and controlled in a combinatorial manner. We then developed a panel of mass cytometry detectors to enable >40 surface and intracellular proteins to be simultaneously measured at single cell resolution. Using this panel, we identified some of the signaling intermediates activated by growth factors that differentially control human HSC biological responses assessed in high-throughput assays. Correlation of the molecular properties, surface phenotypes and functional activities of CD34+ subsets have further revealed a surprising degree both of heterogeneity within each phenotype and overlap between phenotypes. In some cases, the results suggest a given phenotype contains distinct subsets and a broader scheme of differentiation pathways than suggested by current models of human hematopoietic cell differentiation. Finally, we identify CD33+ as a novel marker which demarcates the most potent human HSC within the current best phenotypic enrichment strategy. These results lay a foundation on which future HSC expansion strategies can be constructed, and have implications for the development of leukemia.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-12-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0221376
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2016-02
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada