UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Identification of metastasis-driving genes as potential therapeutic targets/ biomarkers for metastatic prostate cancer Chiang, Yan Ting

Abstract

Metastatic prostate cancer is currently incurable. Metastasis is thought to result from changes in the expression of specific metastasis-driving genes, leading to a cascade of activated downstream genes setting the metastatic process in motion. As such, metastasis-driving genes could provide effective therapeutic targets and prognostic biomarkers for improved disease management. In search of potential metastasis-driving genes, genes with elevated expression in patient-derived metastatic LTL-313H prostate cancer tissues, as distinct from non-metastatic LTL-313B tissues, were identified. Among these genes, TIMELESS and DLX1 were promising. Unfortunately, their silencing and overexpression in prostate cancer cells did not lead to inhibition of metastatic properties, indicating that they were not metastasis-driving genes. A different, novel approach was used based on the notion that metastasis-driving genes can activate genes in an amplification cascade fashion. Accordingly, I used the IPA’s Upstream Regulator Analysis tool to analyze the differential gene expression profile of the metastatic and non-metastatic tissues to predict the upstream master regulatory (metastasis-driving) genes accountable for the differential expression. Six candidate genes were identified, including GATA2, a pioneer factor-encoding gene. Elevated GATA2 expression in clinical metastatic prostate cancer specimens correlated with poor patient prognosis. Furthermore, GATA2 gene silencing in human prostate cancer LNCaP cells led to marked reduction in cell proliferation, cell migration, tissue invasion, focal adhesion disassembly and a dramatic change in transcriptional activity, indicating that GATA2 plays a critical role in prostate cancer metastasis. As such, GATA2 could represent a metastasis-driving gene and a potential therapeutic target for inhibiting the growth and metastasis development in prostate cancer. Further analysis of GATA2-regulated genes led to the development of a GATA2-based metastatic gene signature. Its prognostic value was confirmed using two prostate cancer patient cohorts. In addition, it was shown to be a prognostic factor for risk assessment of metastasis development, independent of the widely used D’Amico prognostic classification system. However, a thorough validation is critical and, if successful, the GATA2-based gene signature could lead to a paradigm shift in the management of early prostate cancer. In conclusion, the findings of this study appear to be potentially useful for improved management of metastatic prostate cancer.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada