UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Exotic phenomena in topological states of matter Vazifeh, Mohammad Mahmoudzadeh

Abstract

Electronic states in band insulators and semimetals can form nontrivial topological structures which can be classified by introducing a set of well defined topological invariants. There are interesting experimentally observable phenomena tied to these topological invariants which are robust as long as the invariants remain well-defined. One important class manifesting these topological phenomena in the bulk and at the edges is the time reversal invariant topological band insulators first discovered in HgTe in 2007. Since then, there have been enormous efforts from both the experimental and the theoretical sides to discover new topological materials and explore their robust physical signatures. In this thesis, we study one important aspect, i.e., the electromagnetic response in the bulk and at the spatial boundaries. First we show how the topological action, which arises in a time reversal invariant three dimensional band insulator with nontrivial topology, is quantized for open and periodic boundary conditions. This confirms the Z2 nature of the strong topological invariant required to classify time-reversal invariant insulators. Next, we introduce an experimentally observable signature in the response of electronic spins on the surface of these materials to the perpendicular magnetic field. We proceed by considering electromagnetic response in the bulk of topological Weyl semimetals in a systematic way by considering a lattice model and we address important questions on the existence or absence of the Chiral anomaly. In the end, we show how a topological phase in a one dimensional system can be an energetically favourable state of matter and introduce the notion of self-organized topological state by proposing an experimentally feasible setup.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada