UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The holographic interface of a fractional (2+1)D topological insulator at finite temperature Wong, Anson W.C.

Abstract

Topological insulators are materials that are insulating in the bulk but conductive on the boundary. Although standard condensed matter techniques elucidate the dissipationless boundary physics of topological insulators well at weak coupling, they fail to do the same at strong coupling where exciting phenomena such as emergence and fractionalization are likely to occur. Fortunately the AdS/CFT correspondence offers an alternative perspective of the strong coupling limit in the form of a classical supergravity dual. In this thesis we realize the interface of a strongly-interacting fractional (2+1)D time-reversal invariant topological insulator at finite temperature by embedding a D5-brane with a $U(1)$ chemical potential into (AdS₅ black hole) × S⁵ supergravity. The thermodynamics of our interface are found to be considerably fermionic. Study of the interface has promising applications ranging from the design of spin channels in quantum computing, to the deeper understanding of highly-entangled systems.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada