- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Alternative replica molding methods for polymer based...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Alternative replica molding methods for polymer based microfluidic channels Coquinco, Bernard
Abstract
Microfluidics provides an opportunity to create low cost devices that can potentially contain many elements of a diagnostics lab on a single chip. While the cost of the finished product may be low, a common method of fabricating microfluidic devices such as soft lithography can be expensive to prototype due to the use of photolithography equipment meant for the semiconductor industry. In addition, the majority of microfluidic research has been done using rectangular channels but in some cases the ability to make circular cross-section channel microfluidic devices would be very useful. For areas such as modelling cardiovascular flows, investigating micro flow cytometry and inertial particle focusing, the ability to create circular channels could provide improvement over the use of rectangular channels. To address these issues, an ultra low cost method of making silicon molds patterned with SU-8 has been developed as well as a method to create circular microfluidic channels via hot embossing and double casting techniques in both thermoplastic materials and PDMS. This hot embossing based method to create round channels allows for the rapid creation of straight and curving round channels in PMMA and other plastics as well as a method to create PDMS round channels using soft lithography.
Item Metadata
Title |
Alternative replica molding methods for polymer based microfluidic channels
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2014
|
Description |
Microfluidics provides an opportunity to create low cost devices that can potentially contain many elements of a diagnostics lab on a single chip. While the cost of the finished product may be low, a common method of fabricating microfluidic devices such as soft lithography can be expensive to prototype due to the use of photolithography equipment meant for the semiconductor industry. In addition, the majority of microfluidic research has been done using rectangular channels but in some cases the ability to make circular cross-section channel microfluidic devices would be very useful. For areas such as modelling cardiovascular flows, investigating micro flow cytometry and inertial particle focusing, the ability to create circular channels could provide improvement over the use of rectangular channels. To address these issues, an ultra low cost method of making silicon molds patterned with SU-8 has been developed as well as a method to create circular microfluidic channels via hot embossing and double casting techniques in both thermoplastic materials and PDMS. This hot embossing based method to create round channels allows for the rapid creation of straight and curving round channels in PMMA and other plastics as well as a method to create PDMS round channels using soft lithography.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2014-08-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0166937
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2014-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada