- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Storage system tracing and analysis
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Storage system tracing and analysis Meyer, Dutch T.
Abstract
File system studies are critical to the accurate configuration, design, and continued evolution of storage systems. However, surprisingly little has been published about the use and behaviour of file systems under live deployment. Most published file system studies are years old, or are extremely limited in size and scope. One reason for this deficiency is that studying clusters of storage systems operating at scale requires large data repositories that are difficult to collect, manage, and query. In effect, the demands introduced by performing detailed file system traces creates new and interesting storage challenges in and of itself. This thesis describes a methodology to facilitate the collection, analysis, and publication of large traces of file system activity and structure so that organizations can perform regular analysis of their storage systems and retain that analysis to answer questions about their system's behaviour. To validate this methodology I investigate the use and performance of several large storage deployments. I consider the impact of the observed system usage and behaviour on file system design, and I describe the processes by which the collected traces can be efficiently processed and manipulated. I report on several examples of long standing incorrect assumptions, efficient engineering alternatives, and new opportunities in storage system design.
Item Metadata
Title |
Storage system tracing and analysis
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2015
|
Description |
File system studies are critical to the accurate configuration, design, and continued evolution of storage systems. However, surprisingly little has been published about the use and behaviour of file systems under live deployment. Most published file system studies are years old, or are extremely limited in size and scope. One reason for this deficiency is that studying clusters of storage systems operating at scale requires large data repositories that are difficult to collect, manage, and query. In effect, the demands introduced by performing detailed file system traces creates new and
interesting storage challenges in and of itself. This thesis describes a methodology to facilitate the collection, analysis, and publication of large traces of file system activity and structure so that organizations can perform regular analysis of their storage systems and retain that analysis to answer questions about their system's behaviour. To validate this methodology I investigate the use and performance of several large storage deployments. I consider the impact of the observed system usage and behaviour on file system design, and I describe the processes by which the collected traces can be efficiently processed and manipulated. I report on several examples of long standing incorrect assumptions, efficient engineering alternatives, and new opportunities in storage system design.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-08-28
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0166682
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2015-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada