UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Role and regulation of Gp78 E3 ubiquitin ligase and its ligand autocrine motility factor in mitochondrial dynamics and mitochondria-endoplasmic reticulum association Wang, Peter Tien Chun


A ligand-receptor pair, autocrine motility factor (AMF) and Gp78, have been discovered to play multiple roles in mammalian cells. AMF functions as the essential glycolytic enzyme phosphoglucose isomerase in the cytoplasm, but when secreted acts a cytokine that stimulates cell motility, growth and survival. Gp78 serves as the cell surface receptor of AMF, and thus it is also known as AMFR. However, Gp78 can localize to the ER membrane and functions as an E3 ubiquitin ligase in the endoplasmic reticulum associated degradation (ERAD) pathway where it targets a wide variety of proteins for degradation. The concerted actions of AMF and Gp78 contribute to multiple aspects of cancer progression, and thus elevated levels of both proteins have been found in many types of cancers. Recently, it was discovered that AMF and Gp78 alter mitochondrial morphology and ER-mitochondria calcium coupling, processes that are essential in regulating mitochondrial metabolism and apoptosis. Furthermore, Gp78 has also been localized to ER-mitochondria contact sites where it targets the mitochondrial fusion proteins, mitofusin 1 and 2 (Mfn1/2), for degradation. In this dissertation, I show that during Gp78 induced mitophagy, autophagosome marker LC3 is recruited to mitochondria associated ER membrane. Moreover, I show that Gp78-dependent degradation of the mitofusins leads to diminished mitochondrial fusion and a perturbation of mitochondrial dynamics. I also report the ability of AMF to inhibit Gp78-induced mitochondrial fission. In my study of ER-mitochondrial association, I observed two types of ER-mitochondria contacts in HT-1080 fibrosarcoma cells: the rough and the smooth. Gp78 ubiquitin ligase activity selectively promotes rough ER-mitochondria association through the degradation of Mfn2. AMF treatment inhibits Gp78-dependent Mfn2 degradation and decreases rough ER-mitochondria contact sites. By dissecting the functions of AMF and Gp78 at the ER mitochondria contact sites, my thesis not only expands our understanding of the relationship between AMF and Gp78, it also provides novel insights into the intimate connection between the ER and mitochondria.

Item Citations and Data


Attribution-NonCommercial-NoDerivs 2.5 Canada