UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Search for a light Higgs boson with the BABAR detector : with proposals to improve drift chamber aging studies and particle identification So, Rocky Yat Cheung

Abstract

In the Standard Model of particle physics, the Higgs boson is an elementary particle required to explain the origin of mass. One extension, the next-to-minimal supersymmetric Standard Model, predicts the existence of a GeV/c² scale Higgs boson, denoted A^0. This can be produced at B meson factories such as the BABAR experiment at the Stanford Linear Accelerator Center. We study e⁺e- → Υ(2S)→ π⁺π-Y(1S), Y(1S)→ γA^0, A^0 → gg, ss-bar, cc-bar decays using data collected by the BABAR detector at a centre-of-mass energy of 10.02 GeV/c². The search for A^0 → gg or ss-bar is performed by fully reconstructing the entire decay chain. We search for an excess of events relative to expected backgrounds in the reconstructed A^0 mass spectra. No significant excess is found. We set upper limits on product branching fraction B(Y(1S) → γA^0)xB(A^0 → gg) from 1x10-⁶ to 2x10-² for A^0 masses from 0.50 to 9.00 GeV/c², and B(Y(1S) → γA^0)x B(A^0 → ss-bar) from 5x10-⁶ to 1x10-³ for A^0 masses from 1.50 to 9.00 GeV/c². The search for A^0 → cc-bar is done by reconstructing the dipion transition, the radiative photon, and a D meson as a tag for cc-bar decays. We infer the mass of an A^0 candidate from the recoil of the dipion transition and the radiative photon. No significant signal is seen in the data and we set upper limits on product branching fraction B(Y(1S) → γA^0)xB(A^0 → cc-bar) from 7x10-⁵ to 2x10-³ for A^0 masses from 4.00 to 8.95 GeV/c² and 9.10 to 9.25 GeV/c². These are the first measurements to date and set constraints on the next-to-minimal supersymmetric Standard Model. Proposals to improve drift chamber aging studies and particle identification are included as part of the thesis. We propose to improve aging studies with prototypes that better resemble a full-scale drift chamber. Using TRIUMF beam data, we establish that at a particle identification efficiency of 95%, misidentification rates may be reduced from 2.2% to 1.9% by including likelihood tests and Kolmogorov-Smirnov tests and to 0.5% by including cluster counting.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivs 2.5 Canada

Usage Statistics