UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Music and movement : the influence of tempo on the mirror neuron system in children Evanchu Hilderman, Courtney

Abstract

BACKGROUND: The mirror neuron system (MNS) is a neurological network associated with action-perception coupling, and is influenced by previous experiences. Visual, auditory, multi-modal, congruent and incongruent stimuli have been shown to modulate the response of the MNS throughout the various stages of human development. The musical attribute of tempo may exert a specific influence on action perception but this has not been studied in children. PURPOSE: The overarching purpose of this research is to explore the neurological interactions of music and action. This study asks the question, “How does the tempo of regular pulse influence perception of action in children?” METHODS: This research reflected on music and the MNS within the framework of dynamic systems theory (DST). A literature review examined the research relevant to the study question. Finally, a pilot study compared the responses in the MNS of 10 children during exposure to stimuli with tempi of 40 beats per minute (BPM) and 173BPM by examining the relative power of the mu rhythm frequency band (8-13Hz) in the sensorimotor cortex. RESULTS: Previous research suggests tempo significantly influences executed movements, cortical excitability, perception of emotion in music, and perception of synchrony in audio-visual stimuli. The pilot study identified significant mu suppression in the left sensorimotor cortex during visual conditions only, whereas the right sensorimotor cortex demonstrated significant mu suppression during auditory, visual and multi-modal conditions. In the left hemisphere, visual stimuli showed significantly greater mu suppression than auditory stimuli. In the right hemisphere, visual stimuli with a tempo of 173BPM showed significantly greater mu suppression than auditory stimuli with a tempo of 40BPM. The covariates of age, musical experience and dance experience were identified to have significant interactions with conditions. CONCLUSIONS: This pilot study provided the first evidence that visual stimuli result in stronger mu suppression compared to auditory stimuli in typically developing children, similar to that found in adults. Increased tempo was associated with stronger action-perception coupling for uni-modal stimuli. This study lacked statistical power to demonstrate differences between multi-modal stimuli exhibiting equivalent or differing tempi; further research with larger samples is needed to explore these influences.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada