UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Under-ice circulation in an Arctic lake : observations from two field seasons in Lake Kilpisjärvi, Finland Graves, Kelly Elise


High spatial resolution CTD profiles and Acoustic Doppler Current Profiler velocity measurements show significant rotational basin-wide, under-ice circulation in May of 2013 and 2014 at Lake Kilpisjärvi, Finland (69°01'N, 20°49'E), a seasonally ice-covered, Arctic lake with negligible through-flow. In 2013, a high-pressure horizontal density anomaly with vertically paired rotating circulations was observed. The estimated maximum cyclonic and anti-cyclonic azimuthal velocities magnitudes were 0.03 and 0.02 m s-¹. The Rossby radius (Rri), horizontal length scale at which rotational effects become as important as pressure effects, was estimated to be ∼ 160 m and the Rossby number(R⃘⃘⃘⃘⃘ ), the ratio of the centripetal acceleration to the Coriolis acceleration, ∼ 0.2. It is hypothesized that this circulation was driven by heat flux at the shorelines from warm incoming streams causing a density flow down the slopes to the centre of the lake where the flow converged. This flow was balanced with a shoreward flow beneath the ice. These flows were modified by the earth's rotation, which resulted in the rotational circulation observed. In 2014, a cyclonic, low-pressure horizontal density anomaly was observed near the centre of the lake and was vertically paired with a weak anti-cyclonic anomaly in the top 10 m (mean depth of the lake is 19.5 m). The estimated azimuthal velocities had maximum cyclonic and anti-cyclonic magnitudes of 0.006 and 0.003 m s-¹. The anomaly was estimated to have Rri ∼ 240 m, with R⃘⃘ ∼ 0.12. It is hypothesized that this circulation was driven by sediment release of heat to the overlying water causing a tilt in the isopycnals near the shores of the lake that caused an inward pressure force that was balanced by the Coriolis force and, to a lesser extent, the centripetal acceleration force. The 2013 observations were made immediately prior to ice-off, and the 2014 observations were 12 days prior to ice-off. This time difference allowed for significantly different ice and snow conditions, and the addition of warm inflows, which forced the circulation closer to the ice-off date. These observations add to the growing understanding of the relationship between thermal distribution and circulation under ice.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivs 2.5 Canada