- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Laboratory evaluation of chemical and biological kinetic...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Laboratory evaluation of chemical and biological kinetic gas hydrate inhibitors Sharifi, Hassan
Abstract
For practical purposes, kinetic hydrate inhibitors must perform in a predictable manner in the field. However, the complexity of the petroleum fluid composition, the presence of dissolved electrolytes, and high driving force (overpressure or sub-cooling), make it difficult to impossible task to achieve. In this thesis, the performance of two chemical kinetic inhibitors, polyvinylcaprolactam (PVCap) and polyvinylpyrrolidone (PVP), and two biological ones, type I and III antifreeze proteins (AFP I and III) were evaluated under conditions mimicking oil and gas filed ones. The evaluation was done by using a double high pressure stirred vessel (crystallizer), a high-pressure cell in conjunction with a rotational rheometer and a high pressure micro differential scanning calorimeter. Although the above noted inhibitors were found to prolong the hydrate induction time and reduce the initial hydrate growth in saline solutions, the rate was found to increase when hydrate crystals started to form in the gas phase of the crystallizer. Circular dichroism experiments suggested that the saline solution does not perturb the structure of AFP I and III. However, in the presence of NaCl, the inhibitory activity of AFP I to prolong induction time decreased while AFP III was more active. Here, increase in induction time was ordered: no inhibitor
Item Metadata
Title |
Laboratory evaluation of chemical and biological kinetic gas hydrate inhibitors
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2014
|
Description |
For practical purposes, kinetic hydrate inhibitors must perform in a predictable manner in the field. However, the complexity of the petroleum fluid composition, the presence of dissolved electrolytes, and high driving force (overpressure or sub-cooling), make it difficult to impossible task to achieve. In this thesis, the performance of two chemical kinetic inhibitors, polyvinylcaprolactam (PVCap) and polyvinylpyrrolidone (PVP), and two biological ones, type I and III antifreeze proteins (AFP I and III) were evaluated under conditions mimicking oil and gas filed ones. The evaluation was done by using a double high pressure stirred vessel (crystallizer), a high-pressure cell in conjunction with a rotational rheometer and a high pressure micro differential scanning calorimeter. Although the above noted inhibitors were found to prolong the hydrate induction time and reduce the initial hydrate growth in saline solutions, the rate was found to increase when hydrate crystals started to form in the gas phase of the crystallizer.
Circular dichroism experiments suggested that the saline solution does not perturb the structure of AFP I and III. However, in the presence of NaCl, the inhibitory activity of AFP I to prolong induction time decreased while AFP III was more active. Here, increase in induction time was ordered: no inhibitor
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2014-12-15
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0166089
|
URI | |
Degree (Theses) | |
Program (Theses) | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2015-02
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada