- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The role of BIN1 in the regulation of cell proliferation,...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The role of BIN1 in the regulation of cell proliferation, apoptosis and tumor formation in cutaneous T-cell lymphoma Esmailzadeh, Sharmin
Abstract
Cutaneous T-cell lymphomas (CTCLs) represent a group of lymphoproliferative disorders characterized by homing of malignant T-cells to the skin’s surface. There are two main types of CTCL: Mycosis Fungoides (MF) and Sezary Syndrome (SS). We have demonstrated that expression of the Abelson helper integration site-1 (AHI-1) oncogene is significantly increased in CD4⁺CD7- cells from SS patients. Bridging integrator 1 (BIN1) has been identified by microarray analysis of CTCL cells as a candidate gene involved in AHI-1-mediated lymphomagenesis. Interestingly, BIN1expression is significantly reduced in SS patient samples. However, the role of BIN1 and its molecular connection to AHI-1 in lymphomagenesis remains unexplored. I extensively investigated the role of key BIN1 isoforms in primary and CTCL cell line model systems both in vitro and in vivo. I demonstrated that overexpression/restored expression of BIN1 isoforms has strong anti-proliferative and pro-apoptotic roles in CTCL cells in vitro, and significantly inhibits the tumorigenic activity of these cells in vivo. The pro-apoptotic role of BIN1 in CTCL cells occurs through downregulation of c-FLIP, a critical inhibitor of Fas/FasL-mediated apoptosis. I also observed significant reduction and increase in BIN1 and c-FLIP transcripts in primary CTCL samples, respectively. Interestingly, high BIN1 and low c-FLIP transcripts correlated with better survival rate in SS patients. Thus, BIN1 deficiency may play an important role in CTCL pathogenesis by causing apoptosis resistance. Furthermore, I explored potential mechanisms by which AHI-1 leads to downregulation of BIN1, by (1) examining if AHI-1 physically interacts with BIN1; and (2) determining if AHI-1 alters transcription of BIN1 by changing the methylation status of the BIN1 promoter. These experiments did not yield direct evidence of these two potential mechanisms of AHI-1’s role in BIN1 suppression. Thus, the mechanism by which AHI-1 regulates BIN1 remains unknown. Nevertheless, several potential BIN1 interacting proteins were uncovered in CTCL cells, including α/β-tubulin and β-actin. Overall, this study provides the first evidence of strong tumor suppressor activity of BIN1 in CTCL. It points to the loss of BIN1 and subsequent upregulation of c-FLIP as an important mechanism to induce apoptosis resistance in CTCL cells, and identifies BIN1 and c-FLIP as potential CTCL therapeutic targets.
Item Metadata
Title |
The role of BIN1 in the regulation of cell proliferation, apoptosis and tumor formation in cutaneous T-cell lymphoma
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2014
|
Description |
Cutaneous T-cell lymphomas (CTCLs) represent a group of lymphoproliferative disorders characterized by homing of malignant T-cells to the skin’s surface. There are two main types of CTCL: Mycosis Fungoides (MF) and Sezary Syndrome (SS). We have demonstrated that expression of the Abelson helper integration site-1 (AHI-1) oncogene is significantly increased in CD4⁺CD7- cells from SS patients. Bridging integrator 1 (BIN1) has been identified by microarray analysis of CTCL cells as a candidate gene involved in AHI-1-mediated lymphomagenesis. Interestingly, BIN1expression is significantly reduced in SS patient samples. However, the role of BIN1 and its molecular connection to AHI-1 in lymphomagenesis remains unexplored.
I extensively investigated the role of key BIN1 isoforms in primary and CTCL cell line model systems both in vitro and in vivo. I demonstrated that overexpression/restored expression of BIN1 isoforms has strong anti-proliferative and pro-apoptotic roles in CTCL cells in vitro, and significantly inhibits the tumorigenic activity of these cells in vivo. The pro-apoptotic role of BIN1 in CTCL cells occurs through downregulation of c-FLIP, a critical inhibitor of Fas/FasL-mediated apoptosis. I also observed significant reduction and increase in BIN1 and c-FLIP transcripts in primary CTCL samples, respectively. Interestingly, high BIN1 and low c-FLIP transcripts correlated with better survival rate in SS patients. Thus, BIN1 deficiency may play an important role in CTCL pathogenesis by causing apoptosis resistance.
Furthermore, I explored potential mechanisms by which AHI-1 leads to downregulation of BIN1, by (1) examining if AHI-1 physically interacts with BIN1; and (2) determining if AHI-1 alters transcription of BIN1 by changing the methylation status of the BIN1 promoter. These experiments did not yield direct evidence of these two potential mechanisms of AHI-1’s role in BIN1 suppression. Thus, the mechanism by which AHI-1 regulates BIN1 remains unknown. Nevertheless, several potential BIN1 interacting proteins were uncovered in CTCL cells, including α/β-tubulin and β-actin.
Overall, this study provides the first evidence of strong tumor suppressor activity of BIN1 in CTCL. It points to the loss of BIN1 and subsequent upregulation of c-FLIP as an important mechanism to induce apoptosis resistance in CTCL cells, and identifies BIN1 and c-FLIP as potential CTCL therapeutic targets.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2014-10-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0166056
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2014-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada