- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Precision manipulations using a low-dimensional haptic...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Precision manipulations using a low-dimensional haptic interface Humberston, Benjamin
Abstract
When interacting with physical objects using their own hands, humans display effortless dexterity. It remains a non-intuitive task, however, to specify the motion of a virtual character’s hand or of a robotic manipulator. Creating these motions generally requires animation expertise or extensive periods of offline motion capture. This thesis presents a real-time, adaptive animation interface, specifically designed around haptic (i.e., touch) feedback, for creating precision manipulations of virtual objects. Using this interface, an animator controls an abstract grasper trajectory while the full hand pose is automatically shaped by compliant scene interactions and proactive adaptation. Haptic feedback enables intuitive control by mapping interaction forces from the full animated hand back to the reduced animator feedback space, invoking the same sensorimotor control systems utilized in natural precision manipulations. We provide an approach for online, adaptive shaping of the animated manipulator using our interface based on prior interactions, resulting in more functional and appealing motions. In a user study with nonexpert participants, we tested the effectiveness of haptic feedback and proactive adaptation of grasp shaping. Comparing the quality of motions produced with and without force rendering, haptic feedback was shown to be critical for efficiently communicating contact forces and dynamic events to the user. The effects of proactive shaping, though inarguably beneficial to visual quality, resulted in mixed behavior for our grasp quality metrics.
Item Metadata
Title |
Precision manipulations using a low-dimensional haptic interface
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2014
|
Description |
When interacting with physical objects using their own hands, humans display effortless dexterity. It remains a non-intuitive task, however, to specify the motion of a virtual character’s hand or of a robotic manipulator. Creating these motions generally requires animation expertise or extensive periods of offline motion capture. This thesis presents a real-time, adaptive animation interface, specifically designed around haptic (i.e., touch) feedback, for creating precision manipulations of virtual objects. Using this interface, an animator controls an abstract grasper trajectory while the full hand pose is automatically shaped by compliant scene interactions and proactive adaptation. Haptic feedback enables intuitive control by mapping interaction forces from the full animated hand back to the reduced animator feedback space, invoking the same sensorimotor control systems utilized in natural precision manipulations. We provide an approach for online, adaptive shaping of the animated manipulator using our interface based on prior interactions, resulting in more functional and appealing motions.
In a user study with nonexpert participants, we tested the effectiveness of haptic feedback and proactive adaptation of grasp shaping. Comparing the quality of motions produced with and without force rendering, haptic feedback was shown to be critical for efficiently communicating contact forces and dynamic events to the user. The effects of proactive shaping, though inarguably beneficial to visual quality, resulted in mixed behavior for our grasp quality metrics.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-08-31
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0165938
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2014-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada