UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Polymer grafted carbon nanotube reinforced ultra high molecular weight polyethylene fibre Ma, Yue

Abstract

In this research, a series of experiments have been conducted to develop a high performance ultra-high molecular weight polyethylene (UHMWPE) fibre with improved mechanical properties. A novel process was developed whereby polyethylene grafted multi-walled carbon nanotubes (PE-g-MWCNTs) were used to reinforce UHMWPE fibre. PE-g-MWCNT/UHMWPE fibres with remarkable modulus and tensile strength of 125.5 GPa and 4.0 GPa, respectively, were successfully fabricated and showed definite potential for reducing the weight of body armour. A systematic study was carried out to investigate the effects of gel spinning conditions on tensile properties and morphologies of UHMWPE fibre. Spinning parameters, including polymer concentration, spinning temperature and winding-up speed, were selected and studied systematically and the spinning condition of UHMWPE fibre was optimized by design of experiment. Intensive experiments were conducted to investigate the feasibility of reinforcing UHMWPE fibre with pristine multi-walled carbon nanotubes (MWCNTs). Various mechanical methods include ultra-sonication, ball milling, microfluidizing, etc. were applied for dispersing pristine MWCNTs. Studies on tensile properties and morphologies of formed MWCNT/ UHMWPE fibre demonstrated that pristine MWCNTs tend to exist in micro-meter size agglomerations and no improvement in tensile properties of the MWCNT/UHMWPE fibres was found. Finally, chemical functionalization of MWCNTs using a coupling agent and polymer grafting technology was studied. The effective modulus and strength of MWCNTs were calculated based on the ‘rule of mixture’. Compared to coupling agent functionalization, polymer grafting has been found to be more effective in improving reinforcement of MWCNTs in UHMWPE fibre due to a stronger load transfer on the interface. The reinforcement mechanism of polymer grafted MWCNTs was analyzed based on experimental observations.

Item Media