- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Scrolling in radiology image stacks : multimodal annotations...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Scrolling in radiology image stacks : multimodal annotations and diversifying control mobility Oram, Louise Carolyn
Abstract
Advances in image acquisition technology mean that radiologists today must examine thousands of images to make a diagnosis. However, the physical interactions performed to view these images are repetitive and not specialized to the task. Additionally, automatic and/or radiologist-generated annotations may impact how radiologists scroll through image stacks as they review areas of interest. We analyzed manual aspects of this work by observing and/or interviewing 19 radiologists; stack scrolling dominated the resulting task examples. We used a simplified stack seeded with correct or incorrect annotations in our experiment on lay users. The experiment investigated the impact of four scrolling techniques: traditional scrollwheel, click+drag, sliding-touch and tilting to access rate control. We also examined the effect of visual vs. haptic annotation cues’ on scrolling dynamics, detection accuracy and subjective factors. Scrollwheel was the fastest scrolling technique overall for our lay participants. Combined visual and haptic annotation highlights increased the speed of target-finding in comparison to either modality alone. Multimodal annotations may be useful in radiology image interpretation; users are heavily visually loaded, and there is background noise in the hospital environment. From interviews with radiologists, we see that they are receptive to a mouse that they can use to map different movements to interactions with images as an alternative to the standard mouse usually provided with their workstation.
Item Metadata
Title |
Scrolling in radiology image stacks : multimodal annotations and diversifying control mobility
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2013
|
Description |
Advances in image acquisition technology mean that radiologists today must examine thousands of images to make a diagnosis. However, the physical interactions performed to view these images are repetitive and not specialized to the task. Additionally, automatic and/or radiologist-generated annotations may impact how radiologists scroll through image stacks as they review areas of interest. We analyzed manual aspects of this work by observing and/or interviewing 19 radiologists; stack scrolling dominated the resulting task examples.
We used a simplified stack seeded with correct or incorrect annotations in our experiment on lay users. The experiment investigated the impact of four scrolling techniques: traditional scrollwheel, click+drag, sliding-touch and tilting to access rate control. We also examined the effect of visual vs. haptic annotation cues’ on scrolling dynamics, detection accuracy and subjective factors. Scrollwheel was the fastest scrolling technique overall for our lay participants. Combined visual and haptic annotation highlights increased the speed of target-finding in comparison to either modality alone.
Multimodal annotations may be useful in radiology image interpretation; users are heavily visually loaded, and there is background noise in the hospital environment. From interviews with radiologists, we see that they are receptive to a mouse that they can use to map different movements to interactions with images as an alternative to the standard mouse usually provided with their workstation.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2013-11-15
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0165660
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2014-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International