UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Novel fabrication of flexible microelectrodes with macroporous platinum film using latex polystyrene sphere template Oyunerdene, Nominerdene


With great strides in neuroscience that have been made in the past decade, further understandings of complex neural systems require extensive neural information from chronic implantation of biocompatible neural devices. Polyimide-based flexible microelectrode arrays were one of the earlier biocompatible neural devices due to its mechanical impedance matching with brain tissue. In this work, we propose to incorporate non-conventional laser ablation method for fabrication of flexible biocompatible microelectrodes. We also present a novel approach to modifying flexible microelectrodes with macroporous platinum film using latex polystyrene sphere template. Maskless laser ablation was used to pattern the electrode, and probe definition as well creating the contact openings of flexible polyimide electrodes. Laser ablation is a non-photolithographic method which does not require conventional cleanroom environment and is ideal for rapid prototyping of devices. An ordered polystyrene bead template was deposited by simple pipetting of bead solution over gold contact openings and evaporating in ambient room setting. Pulsed-potentiostatic mode electrochemical deposition of platinum through the polystyrene bead template resulted in increase in effective surface area of electrodes. The impedance of the platinum modified electrodes increased by two orders of magnitude compared to unmodified electrodes. Synergetic modification of microelectrodes with macroporous platinum film and polymer-brush coating can lead to fabrication of highly biocompatible microelectrode with low impedance characteristics.

Item Citations and Data


Attribution 2.5 Canada