- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Electronic structure of sulfur-nitrogen containing...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Electronic structure of sulfur-nitrogen containing compounds : correlations with theory and chemical reactivity Okbinoğlu, Tülin Nesime
Abstract
Molecules containing sulfur-nitrogen bonds, such as sulfonamides, have long been of interest due to their many uses and chemical properties, including the potential release of nitric oxide and nitroxyl. Understanding the factors that cause sulfonamide reactivity is crucial, yet their inherent electronic complex- ity have made them difficult to examine. In this thesis, sulfur K-edge x-ray absorption spectroscopy (XAS) is used in conjunction with density functional theory (DFT) to determine the role of electronic transmission effects through the sulfur-nitrogen bond. A systematic deconstruction of the elements within the sulfonamide moiety is used as an approach to understand critical factors that dictate electronic structure. First, the effect of oxidation state changes and variations in R-group in sulfenamides, sulfinamides and sulfonamides on intramolecular bonding are explored. Next, N-hydroxylation of the sulfonamide amide, in both alkyl sulfonamides and a series of para-substituted aryl sulfonamides with varying Hammett para-sigma constants are studied using structure-function relationships, in conjunction with DFT, to understand the role of electron donation and withdrawal to the sulfonamide moiety. The outcome of these modifications on the sulfonamide framework lead to better insight towards directed drug design and its influence on nitroxyl and nitric oxide release.
Item Metadata
Title |
Electronic structure of sulfur-nitrogen containing compounds : correlations with theory and chemical reactivity
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2014
|
Description |
Molecules containing sulfur-nitrogen bonds, such as sulfonamides, have long been of interest due to their many uses and chemical properties, including the potential release of nitric oxide and nitroxyl. Understanding the factors that cause sulfonamide reactivity is crucial, yet their inherent electronic complex- ity have made them difficult to examine. In this thesis, sulfur K-edge x-ray absorption spectroscopy (XAS) is used in conjunction with density functional theory (DFT) to determine the role of electronic transmission effects through the sulfur-nitrogen bond. A systematic deconstruction of the elements within the sulfonamide moiety is used as an approach to understand critical factors that dictate electronic structure.
First, the effect of oxidation state changes and variations in R-group in sulfenamides, sulfinamides and sulfonamides on intramolecular bonding are explored. Next, N-hydroxylation of the sulfonamide amide, in both alkyl sulfonamides and a series of para-substituted aryl sulfonamides with varying Hammett para-sigma constants are studied using structure-function relationships, in conjunction with DFT, to understand the role of electron donation and withdrawal to the sulfonamide moiety. The outcome of these modifications on the sulfonamide framework lead to better insight towards directed drug design and its influence on nitroxyl and nitric oxide release.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2014-09-19
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0135560
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2014-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada