- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Enhancing corticospinal tract neurite outgrowth using...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Enhancing corticospinal tract neurite outgrowth using histone deacetylase inhibitors McShane, Christie
Abstract
The human corticospinal tract (CST) is responsible for coordinated voluntary movement and it contains descending afferent inputs involved in autonomic control and gating of spinal reflexes. After spinal cord injury (SCI), damage to the CST causes degeneration of axons and can result in major motor impairments. The CST is especially lacking in its capacity to regenerate after injury. In the current study, we harvested the cortices of postnatal day 8 Thy1YFP16JRS mice, which express YFP in layer five projection neurons, which also express CST transcription factors Ctip2 and Otx1 in vitro. We applied Histone deacetylase (HDAC) inhibitors (Trichostain A [TSA] and Tubastatin A) to the mixed neuron culture and assessed survival and neurite outgrowth of YFP positive CST neurons. TSA treatment increased the number of primary neurites per neuron and the number of branch points exhibited by YFP positive CST neurons. Application of either TSA or Tubastatin A, promoted YFP positive CST neurite outgrowth in baseline media as well as in the presence of the neurotrophin 3 (NT3) and cilliary neurotrophic factor (CNTF), compared to the appropriate controls. Taken together, the application of HDAC inhibitors to postnatal corticospinal neurons can promote neurite outgrowth, branching and an increase in the number of primary neurites when grown in baseline media.
Item Metadata
Title |
Enhancing corticospinal tract neurite outgrowth using histone deacetylase inhibitors
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2011
|
Description |
The human corticospinal tract (CST) is responsible for coordinated voluntary movement and it contains descending afferent inputs involved in autonomic control and gating of spinal reflexes. After spinal cord injury (SCI), damage to the CST causes degeneration of axons and can result in major motor impairments. The CST is especially lacking in its capacity to regenerate after injury. In the current study, we harvested the cortices of postnatal day 8 Thy1YFP16JRS mice, which express YFP in layer five projection neurons, which also express CST transcription factors Ctip2 and Otx1 in vitro. We applied Histone deacetylase (HDAC) inhibitors (Trichostain A [TSA] and Tubastatin A) to the mixed neuron culture and assessed survival and neurite outgrowth of YFP positive CST neurons. TSA treatment increased the number of primary neurites per neuron and the number of branch points exhibited by YFP positive CST neurons. Application of either TSA or Tubastatin A, promoted YFP positive CST neurite outgrowth in baseline media as well as in the presence of the neurotrophin 3 (NT3) and cilliary neurotrophic factor (CNTF), compared to the appropriate controls. Taken together, the application of HDAC inhibitors to postnatal corticospinal neurons can promote neurite outgrowth, branching and an increase in the number of primary neurites when grown in baseline media.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-07-18
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0105112
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2011-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International