UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Elucidating cellular signaling mechanisms of anoikis resistance Ng, Tony Ling Tin

Abstract

Anoikis, which describes a physiologic apoptotic mechanism of non-hematopoietic cells that is triggered following detachment of cells from their native extracellular matrix, functions as a key process to prevent unwanted dissemination of cells from their intended organ site. Cancer cells, in contrast, develop mechanisms to suppress anoikis, allowing them to metastasize through the lymphovascular system to secondary organ sites. In this thesis, we utilized screening methodologies to identify novel signaling mechanisms of anoikis resistance in cancer cells. While a functional approach using an siRNA-based screen of Ewing sarcoma cells did not yield validatable hits, use of gene expression profiling demonstrated a remarkable resemblance of the cellular detachment process to various prototypical forms of cellular and bioenergetic stress, such as nutrient deprivation, hypoxia and endoplasmic reticulum stress. Correspondingly, activation of various cellular stress response pathways was demonstrated, which appear critical for mitigating this stress. In particular, two pathways were shown to play a role in anoikis resistance, mediated by TXNIP and AMPK. TXNIP, which has been shown to play a homeostatic role to modulate glucose metabolism, redox status and proliferation during stress states, was shown to be rapidly up-regulated following cellular detachment, and promotes anoikis in certain cell line models. AMPK is also rapidly activated, activating multiple downstream pathways to restore the bioenergetic status of detached cells, which show marked reduction in ATP levels following detachment. In particular, AMPK-mediated suppression of the mTORC1 pathway plays a particularly important role through the suppression of total protein synthesis levels, an otherwise energetically-costly anabolic process. Blockade of the AMPK pathway or restoration of mTORC1 activation in cancer cells help to restore anoikis, while direct inhibition of protein synthesis in AMPK-deficient cancer cells restores their ability to suppress anoikis. Overall, we show that activation of energy-conserving pathways, normally considered “tumor suppressive” in nature, in fact promotes survival of cancer cells in this early stage of metastasis. This highlights the ambiguous role of many such pathways, which can both promote and suppress tumor progression in a context-dependent manner.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada

Usage Statistics