UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Flow dynamics around downwelling submarine canyons Spurgin, Jessica Michelle

Abstract

Flow dynamics around a downwelling submarine canyon were analyzed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (Northwest Mediterranean) was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby number and Burger number were used to determine the significance of Coriolis acceleration and stratification (respectively) and their impacts on flow dynamics. A new non-dimensional parameter (χ) was introduced to determine the significance of vertical variations in stratification. Downwelling (downwards advection of density) occurs under all forcing conditions and is enhanced within the canyon. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. Offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m). Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate). Comparisons were made to previous studies to explain how variations in initial forcing conditions impact regional flow dynamics.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada