UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A comparative study of the origin of carbonate-hosted gem corundum deposits in Canada Dzikowski, Tashia Jayne

Abstract

This detailed scientific study of the carbonate-hosted gem corundum occurrences near Revelstoke, British Columbia and Kimmirut, Nunavut, Canada was completed in order to: (1) characterize the gem corundum mineralization; (2) develop genetic models for gem corundum mineralization; and (3) develop exploration strategies for gem corundum in carbonate-hosted deposits. These unique localities were chosen to help develop exploration strategies for gem corundum deposits in Canada since existing models of gem corundum genesis are unable to explain their origin. The Revelstoke occurrence is located in the Monashee Complex of the Omineca belt of the Canadian Cordillera. Pink (locally red or purple) corundum crystals occur in thin, folded and stretched layers containing the assemblage of green muscovite + Ba-bearing K-feldspar + anorthite ± phlogopite ± Na-poor scapolite. Mineral assemblages and textures in these silicate layers and thermodynamic modeling suggest that corundum formed from muscovite dehydration at the peak of metamorphism (~650-700 °C at 8.5-9 kbar). Observed trends in whole rock geochemical data indicate that the corundum-bearing silicate (mica-feldspar) layers formed by mechanical mixing of carbonate with the host gneiss protolith; the bulk composition of the silicate layers was modified by Si and Fe depletion during prograde metamorphism. High element mobility is supported by homogenization of δ¹⁸O and δ¹³C values in carbonates and silicates for the marble and silicate layers. The Kimmirut Sapphire Occurrence is located in the Lake Harbour Marble of the Baffin Island segment of the Trans Hudson Orogen. Blue and colourless zoned gem corundum crystals occur in coarse-grained calc-silicate pods with albite + calcite + muscovite ± K-feldspar. Corundum-bearing zones are separated from a phlogopite + plagioclase symplectite around violet diopside crystals by scapolite which fluoresces in UV light. Corundum likely formed during retrograde metamorphism at P-T < 710°C and 6 kbar due to: 1) hydrous fluid alteration of the assemblages nepheline + scapolite and/or nepheline + anorthite or 2) Na-bearing hydrous fluid alteration of anorthite. Comparison of the prograde mineral assemblages, whole rock geochemistry, field relations, and one oxygen isotope measurement of corundum suggest that the most likely protolith is the metamorphism and metasomatism of evaporite-black shale layers within marble.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International