- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The effect of agitation on the penetration depth of...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The effect of agitation on the penetration depth of sodium hypochlorite into dentinal tubules. Davis, Shannon Lisa
Abstract
Objective: The aim of this study was to compare the difference in irrigant penetration into dentinal tubules of 6% NaOCl using the EndoActivator®, ProUltra® PiezoFlow™ and EndoVac® and to compare them with the standard side-vented ProRinse® needle. Methods: Sixty extracted anterior teeth with single canals were accessed conventionally, the pulp tissue removed and canal patency verified using minimal instrumentation. Crystal Violet dye was placed in the canals for 5 days followed by instrumentation of the canals to standard shape with ProTaper rotary files to size F4 using 1ml of 6% NaOCl used between each file. The teeth were divided into four groups and each agitation system was used with 6% NaOCl as per manufacturers recommendations. Each tooth was mounted in acrylic and cut into 1 mm thick section perpendicular to the long axis of the tooth using the Isomet® Linear Precision Saw (Censico International Pvt. Ltd.) The sections were analyzed with a Nikon® Eclipse® Microscope at 40x magnification and NaOCl penetration was measured with the NIS Elements™ Software (Nikon Corporation). Results: The maximum penetration depth for the ProRinse® side-vented needle, EndoActivator and EndoVac irrigation methods occurred in the coronal third of the canal. However, the maximum penetration depth for the ProUltra® PiezoFlow™ Ultrasonic System occurred in the middle third. With regard to NaOCl Penetration area, the coronal and middle thirds showed better area penetration than the apical third in all irrigation groups. Conclusions: The irrigation methods may affect the highest penetration depth of NaOCl into dentinal tubules at different areas of the root canal position.
Item Metadata
Title |
The effect of agitation on the penetration depth of sodium hypochlorite into dentinal tubules.
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2013
|
Description |
Objective: The aim of this study was to compare the difference in irrigant penetration into dentinal tubules of 6% NaOCl using the EndoActivator®, ProUltra® PiezoFlow™ and EndoVac® and to compare them with the standard side-vented ProRinse® needle.
Methods: Sixty extracted anterior teeth with single canals were accessed conventionally, the pulp tissue removed and canal patency verified using minimal instrumentation. Crystal Violet dye was placed in the canals for 5 days followed by instrumentation of the canals to standard shape with ProTaper rotary files to size F4 using 1ml of 6% NaOCl used between each file. The teeth were divided into four groups and each agitation system was used with 6% NaOCl as per manufacturers recommendations. Each tooth was mounted in acrylic and cut into 1 mm thick section perpendicular to the long axis of the tooth using the Isomet® Linear Precision Saw (Censico International Pvt. Ltd.) The sections were analyzed with a Nikon® Eclipse® Microscope at 40x magnification and NaOCl penetration was measured with the NIS Elements™ Software (Nikon Corporation).
Results: The maximum penetration depth for the ProRinse® side-vented needle, EndoActivator and EndoVac irrigation methods occurred in the coronal third of the canal. However, the maximum penetration depth for the ProUltra® PiezoFlow™ Ultrasonic System occurred in the middle third. With regard to NaOCl Penetration area, the coronal and middle thirds showed better area penetration than the apical third in all irrigation groups.
Conclusions: The irrigation methods may affect the highest penetration depth of NaOCl into dentinal tubules at different areas of the root canal position.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2013-07-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0073976
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2013-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International