- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Grating coupler design based on silicon-on-insulator
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Grating coupler design based on silicon-on-insulator Wang, Yun
Abstract
Silicon-on-insulator has become a promising platform for high-density integrated photonics circuits. The large refractive index contrast between the functional silicon layer and its cladding raises a coupling issue between an optical fibre and on-chip devices. Grating coupler provides a compact and efficient way to tackle the coupling issue between the optical fibre and silicon waveguide. In this thesis, a universal design methodology, which accommodates various etch depths, silicon thicknesses, and cladding materials has been demonstrated and verified by both FDTD simulation and measurement results. A fully etched grating coupler with a sub-wavelength grating structure has been proposed to reduce the large back reflection of existing fully etched grating couplers. Back reflection of the proposed fully etched grating coupler has been reduced from more than 20% to about 5%. The insertion loss and bandwidth of the proposed structure have also been improved. In addition, a bidirectional grating coupler for vertical coupling has been proposed to improve the insertion loss and bandwidth of the traditional grating coupler. A simulated insertion loss of -1.5dB with a 3dB bandwidth of more 100nm has been achieved with the proposed structure.
Item Metadata
Title |
Grating coupler design based on silicon-on-insulator
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2013
|
Description |
Silicon-on-insulator has become a promising platform for high-density integrated photonics circuits. The large refractive index contrast between the functional silicon layer and its cladding raises a coupling issue between an optical fibre and on-chip devices. Grating coupler provides a compact and efficient way to tackle the coupling issue between the optical fibre and silicon waveguide. In this thesis, a universal design methodology, which accommodates various etch depths, silicon thicknesses, and cladding materials has been demonstrated and verified by both FDTD simulation and measurement results. A fully etched grating coupler with a sub-wavelength grating structure has been proposed to reduce the large back reflection of existing fully etched grating couplers. Back reflection of the proposed fully etched grating coupler has been reduced from more than 20% to about 5%. The insertion loss and bandwidth of the proposed structure have also been improved. In addition, a bidirectional grating coupler for vertical coupling has been proposed to improve the insertion loss and bandwidth of the traditional grating coupler. A simulated insertion loss of -1.5dB with a 3dB bandwidth of more 100nm has been achieved with the proposed structure.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2013-04-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0073806
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2013-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International