- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The phylogeny and evolution of two ancient lineages...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The phylogeny and evolution of two ancient lineages of aquatic plants Iles, William James Donaldson
Abstract
In my thesis I aim to improve our phylogenetic and evolutionary knowledge of two ancient and distantly related groups of aquatic flowering plants, Hydatellaceae and Alismatales. While the phylogeny of monocots has received fairly intense scrutiny for two decades, some parts of its diversification have been less frequently investigated. One such lineage is the order Alismatales, which defines one of the deepest splits in monocot evolution. Many families of Alismatales are aquatic or semi-aquatic, and they have been implicated in historical discussions of monocot origins. I evaluate inter-familial relationships in the order, considering a suite of 17 plastid genes for 31 Alismatales taxa for all 13 recognized families. This study improves on our understanding of, and confidence in, higher-order Alismatales relationships. I also uncovered convergent gene loss of plastid-encoded subunits for the NADH dehydrogenase complex. I then expand monocot coverage outside Alismatales by including unpublished and newly sequenced data for other orders. This large-scale sample facilitated a re-evaluation of monocot phylogeny and molecular dating, the latter using 25 fossil constraints. Previously included in the monocot order Poales, Hydatellaceae are a small family of ephemeral aquatics relatively recently found to be the sister group of water lilies (Cabombaceae and Nymphaeaceae). I present the first molecular phylogeny of the family and evaluate aspects of the family's morphological evolution. I show how sexual system shifts are associated with shifts in other reproductive traits. I also infer a temporal scale for Hydatellaceae diversification using a two-step Bayesian approach. I use the resulting dated tree to address biogeographic patterns and aspects of niche evolution. I show that its "Gondwanan" distribution is the result of long-distance dispersal and not continental rifting, and demonstrate strong phylogenetic niche conservatism in the family. These studies expand our understanding of evolution in Hydatellaceae, and provide a substantial update to our understanding of Alismatales (and more generally monocot) phylogeny and divergence times.
Item Metadata
Title |
The phylogeny and evolution of two ancient lineages of aquatic plants
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2013
|
Description |
In my thesis I aim to improve our phylogenetic and evolutionary knowledge of two ancient and distantly related groups of aquatic flowering plants, Hydatellaceae and Alismatales. While the phylogeny of monocots has received fairly intense scrutiny for two decades, some parts of its diversification have been less frequently investigated. One such lineage is the order Alismatales, which defines one of the deepest splits in monocot evolution. Many families of Alismatales are aquatic or semi-aquatic, and they have been implicated in historical discussions of monocot origins. I evaluate inter-familial relationships in the order, considering a suite of 17 plastid genes for 31 Alismatales taxa for all 13 recognized families. This study improves on our understanding of, and confidence in, higher-order Alismatales relationships. I also uncovered convergent gene loss of plastid-encoded subunits for the NADH dehydrogenase complex. I then expand monocot coverage outside Alismatales by including unpublished and newly sequenced data for other
orders. This large-scale sample facilitated a re-evaluation of monocot phylogeny and molecular dating, the latter using 25 fossil constraints. Previously included in the monocot order Poales, Hydatellaceae are a small family of ephemeral aquatics relatively recently found to be the sister group of water lilies (Cabombaceae and Nymphaeaceae). I present the first molecular
phylogeny of the family and evaluate aspects of the family's morphological evolution. I show how sexual system shifts are associated with shifts in other
reproductive traits. I also infer a temporal scale for Hydatellaceae diversification using a two-step Bayesian approach. I use the resulting dated tree to address biogeographic patterns and aspects of niche evolution. I show that its "Gondwanan" distribution is the result of long-distance dispersal and not continental rifting, and demonstrate strong phylogenetic niche conservatism in the family. These studies expand our understanding of evolution in Hydatellaceae, and provide a substantial update to our understanding of Alismatales (and more generally monocot) phylogeny and divergence times.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2013-05-10
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0073727
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2013-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International