- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Three dimensional velocity tomography in the core of...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Three dimensional velocity tomography in the core of Messier 71 Samra, Raminder Singh
Abstract
Using the Gemini North Telescope at Mauna Kea, Hawaii, we have obtained astrometric and spectroscopic data for stars in the core of the galactic globular cluster Messier 71 (NGC 6838). This data has allowed us to for the first time ever to obtain three dimensional velocity profiles for stars in the vicinity of centre of a globular cluster. Using the Near Infrared Imager with Adaptive Optics and a 3.8 year baseline for our astrometric study we have resolved the internal proper motion dispersion. The proper motion dispersion is found to be 179±17 µ year⁻¹, we have put a strict limit to the size of any central Intermediate Mass Black Hole at ~150 solar masses at 90% confidence, additionally we find no evidence of core anisotropy. Using our GMOS Integrated Field Unit spectroscopic data we have obtained a radial velocity dispersion of 3.54±0.64 km s⁻¹. Combining our proper motion and radial velocity dispersions we find the geometric distance to the cluster to be 4.1±1.2 kpc. We then compare our geometric distance to a distance found from fitting stellar evolution models. We have developed a new technique for fitting models, using this technique we find the stellar evolution model distance to be 3.9±0.2 kpc. We then discuss how this technique can easily be applied to other clusters in any future work.
Item Metadata
Title |
Three dimensional velocity tomography in the core of Messier 71
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2013
|
Description |
Using the Gemini North Telescope at Mauna Kea, Hawaii, we have obtained astrometric and spectroscopic data for stars in the core of the galactic globular cluster Messier 71 (NGC 6838). This data has allowed us to for the first time ever to obtain three dimensional velocity profiles for stars in the vicinity of centre of a globular cluster. Using the Near Infrared Imager with
Adaptive Optics and a 3.8 year baseline for our astrometric study we have
resolved the internal proper motion dispersion. The proper motion dispersion is found to be 179±17 µ year⁻¹, we have put a strict limit to the size of any central Intermediate Mass Black Hole at ~150 solar masses at 90% confidence, additionally we find no evidence of core anisotropy. Using our GMOS Integrated Field Unit spectroscopic data we have obtained a radial velocity dispersion of 3.54±0.64 km s⁻¹. Combining our proper motion and radial velocity dispersions we find the geometric distance to the cluster to be 4.1±1.2 kpc. We then compare our geometric distance to a distance found from fitting stellar evolution models. We have developed a new technique for fitting models, using this technique we find the stellar evolution model distance to be 3.9±0.2 kpc. We then discuss how this technique can easily be applied to other clusters in any future work.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2013-04-16
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-ShareAlike 3.0 Unported
|
DOI |
10.14288/1.0073700
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2013-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-ShareAlike 3.0 Unported