UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Modeling of Al evaporation and Marangoni flow in Electron Beam Button Melting of Ti-6Al-4V Zhang, Zhongkui


The Electron Beam Cold Hearth Remelting (EBCHR) process has emerged as a key process in producing high quality Ti-6Al-4V ingot and electrode as it is able to effectively consolidate both sponge and scrap material while removing undesired impurities and inclusions, such as Low Density Inclusions (LDIs) and High Density Inclusions (HDIs). However, the challenge of composition control arises in processing alloys such as Ti-6Al-4V where evaporative loss of elements with higher vapor pressure (Al in this case) cannot be ignored. Therefore, in order to cast a product of specified composition, a thorough understanding of the evaporation mechanism and melt flow conditions becomes crucial in process control and optimization. This research presents a comprehensive model of the melt pool produced during Electron Beam Button Melting (EBBM) which has been developed to serve as an intermediate step in the development of a comprehensive tool for analysis and optimization of the industrial EBCHR process. With proper geometry and boundary conditions, the EBBM model can be readily applied to an industrial EBCHR furnace to minimize costly experiments in optimizing process parameters. A thermal-fluid-compositional model has been developed that includes Al evaporation, thermal and compositional buoyancy, thermal and compositional Marangoni flow and flow attenuation in the mushy regime. Experiments on Ti-6Al-4V and CP titanium with a circular electron beam pattern were conducted in a laboratory scale EBBM furnace in order to study the evaporation process and fluid flow in the liquid pool. The data obtained from the experimental work was used to tune the thermal boundary conditions and validate the model predictions. The temperature, surface velocity, pool profile and concentration profile have been experimentally quantified and used for validation of the mathematical model.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International