UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Design of an optical uroflowmeter and assessing bladder pressure through video analysis of the male urine stream Wiens, Kristy


Voiding dysfunction, such as benign prostatic hyperplasia and impaired detrusor contractility, affects more than half of men over the age of 50. Uroflowmetry provides quantitative information of flow dysfunction by measuring the flow rate and total volume of urine expelled by the body. The majority of existing clinical uroflowmeters determine flow rate using a scale to measure increasing mass of urine expelled with time; however, they are expensive and typically found only in specialists’ offices, making it difficult for patients to receive testing. An opportunity therefore exists to develop a much more affordable device which would allow flow rate testing to become a part of routine care and to be conducted in a wider variety of environments such as General Practitioners’ offices and home monitoring. The high demand for digital cameras, particularly due to their extensive use in mobile devices, has resulted in their accelerated advancement and cost reduction. Therefore, a device based on this technology is investigated. In addition to the development of this device, a study was conducted to investigate if information regarding bladder pressure may be obtained by analyzing digital images of the urine stream. Voiding dysfunction may result in abnormally high bladder pressure, caused by urinary obstruction, or low bladder pressure which may be caused by reduced detrusor contractility. The clinical implications and treatment for these two cases are very different; however, they present with similar low flow rate voiding patterns and cannot currently be distinguished non-invasively. It was postulated that increased inertia and turbulence may exist in high pressure flows, and may be identifiable in the digital images of the urine stream.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International