UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Bending displacement capacity of elongated reinforced concrete columns Chin, Helen Hau Ling

Abstract

The bending displacement capacity of elongated wall-like gravity-load columns subjected to lateral displacements due to earthquake demands on a high-rise building is of considerable concern. The long cross-sectional dimension makes these members much less flexible compared to square columns. Elongated gravity-load columns are popular because they can be hidden in walls and because they reduce the span of floor slabs, which means the thickness of the floor slabs can be reduced. No previous tests have been done on elongated gravity-load columns subjected to simulated earthquake loading. In the current study, five half-scale specimens including four column specimens and one wall specimen were subjected to constant axial compression and reverse cyclic lateral load to determine the displacement capacity of the members. The cross-sectional width-to-length ratios of the four columns were 1:1 (square), 1:2, 1:4, 1:8 and the wall specimen was 1:8. The load-deformation responses of the specimens were predicted using two nonlinear programs Response2000 and VecTor2, as well as hand calculation procedures. The predictions were used to design the test setup and were compared with the test results in order to better understand the significance of the test results. The predicted load capacities of all specimens were found to be similar to the observed maximum loads; but the displacement capacities of all specimens were significantly higher than predicted. Slip of the vertical reinforcing bars from the column foundations contributed to a large part of the increased displacement capacity of the columns. Only the elongated columns with a cross-sectional width-to-length ratios of 1:4 and 1:8 and the wall specimen suffered complete collapse during the test.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial 3.0 Unported