- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Analysis and design of isolated bidirectional DC-DC...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Analysis and design of isolated bidirectional DC-DC converter with novel triple phase-shift control Wu, Kuiyuan
Abstract
The bidirectional DC-DC converter is widely used in automobiles, energy storage systems, uninterruptible power supplies and aviation power systems. At present, there are three main problems in this area. The first problem concerns stability of the bidirectional converter when parameters change; the second is maintaining high efficiency of the bidirectional converter over wide load range; the third concerns the sensitivity of the efficiency of the bidirectional converter to parameter changes. This thesis presents a new method to determine the stability of the bidirectional converter using the Lyapunov function method under arbitrary parameter changes. As another new contribution, the stability analysis with eigenvalue method is presented when only the input voltage changes. Although these two methods are used in this thesis to determine the stability of bidirectional dual full bridge DC-DC converter with triple phase-shift control, they can be used to determine the stability of other power converters composed of various power switches and controlled with different control methods. A novel triple phase-shift control method is developed in this thesis to make the bidirectional converter operate at high efficiency and make it robust to parameters changes and output power variations. Simulation results illustrate that the novel control method is better than several other commonly used control methods for the bidirectional converter when component parameters and output power change. The working theory of the bidirectional converter with novel triple phase-shift control method is comprehensively described in the thesis. As another new contribution, the maximum output power of the bidirectional converter is analyzed in detail in the thesis. Simulation studies of this project have provided satisfactory results. Conclusions are made on the presented work and possible future directions in continuing the work are indicated.
Item Metadata
Title |
Analysis and design of isolated bidirectional DC-DC converter with novel triple phase-shift control
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2012
|
Description |
The bidirectional DC-DC converter is widely used in automobiles, energy storage systems, uninterruptible power supplies and aviation power systems. At present, there are three main problems in this area. The first problem concerns stability of the bidirectional converter when parameters change; the second is maintaining high efficiency of the bidirectional converter over wide load range; the third concerns the sensitivity of the efficiency of the bidirectional converter to parameter changes. This thesis presents a new method to determine the stability of the bidirectional converter using the Lyapunov function method under arbitrary parameter changes. As another new contribution, the stability analysis with eigenvalue method is presented when only the input voltage changes. Although these two methods are used in this thesis to determine the stability of bidirectional dual full bridge DC-DC converter with triple phase-shift control, they can be used to determine the stability of other power converters composed of various power switches and controlled with different control methods. A novel triple phase-shift control method is developed in this thesis to make the bidirectional converter operate at high efficiency and make it robust to parameters changes and output power variations. Simulation results illustrate that the novel control method is better than several other commonly used control methods for the bidirectional converter when component parameters and output power change. The working theory of the bidirectional converter with novel triple phase-shift control method is comprehensively described in the thesis. As another new contribution, the maximum output power of the bidirectional converter is analyzed in detail in the thesis. Simulation studies of this project have provided satisfactory results. Conclusions are made on the presented work and possible future directions in continuing the work are indicated.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-07-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0072922
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2012-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International