- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Characterization of elastolytic cathepsins in macrophages
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Characterization of elastolytic cathepsins in macrophages Nho, Boram
Abstract
Atherosclerosis is characterized by a thickening of the arterial wall and loss of its elasticity. The elasticity of the arterial wall is impaired when the extracellular matrix undergoes extensive proteolytic remodeling. Cathepsins are papain-like cysteine proteases that are known to have elastolytic/fibrinolytic activities. They are highly expressed in macrophages present in plaque areas of diseased blood vessels and are thought to contribute to the tissue remodeling. Using cathepsin deficient macrophages and various protease inhibitors, the elastolytic activities of cathepsins B, K, L, and S were quantitatively determined. Up to 60% of the total elastase activity of macrophages was attributed to cathepsin activities. Deficiencies in single cathepsins appeared to be compensated by other cathepsins. The capability and potency of cathepsins B, K, L, and V to hydrolyze fibrin was also determined. The exact quantification of individual cathepsin activities with the help of inhibitors or enzyme deficiencies in biological samples is difficult due to compensatory effects. Thus, specific substrates could be a viable alternative. Commercially available cathepsin activity assay kits that exploit fluorogenic peptidyl substrates are widely used to measure individual cathepsin activities in biological samples. However, substrates marketed as cathepsin K, L and S specific were found to be only marginally specific or completely non-specific, and were hydrolyzed by various other cathepsins. Furthermore, the presence of highly potent endogenous inhibitors in biological samples and the lack of specificity of the substrates skew the measurements towards cathepsin B which is relatively resistant to endogenous inhibitors. Thus, data obtained using commercial substrate kits are to be interpreted with great caution.
Item Metadata
Title |
Characterization of elastolytic cathepsins in macrophages
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2012
|
Description |
Atherosclerosis is characterized by a thickening of the arterial wall and loss of its elasticity. The elasticity of the arterial wall is impaired when the extracellular matrix undergoes extensive proteolytic remodeling. Cathepsins are papain-like cysteine proteases that are known to have elastolytic/fibrinolytic activities. They are highly expressed in macrophages present in plaque areas of diseased blood vessels and are thought to contribute to the tissue remodeling. Using cathepsin deficient macrophages and various protease inhibitors, the elastolytic activities of cathepsins B, K, L, and S were quantitatively determined. Up to 60% of the total elastase activity of macrophages was attributed to cathepsin activities. Deficiencies in single cathepsins appeared to be compensated by other cathepsins. The capability and potency of cathepsins B, K, L, and V to hydrolyze fibrin was also determined.
The exact quantification of individual cathepsin activities with the help of inhibitors or enzyme deficiencies in biological samples is difficult due to compensatory effects. Thus, specific substrates could be a viable alternative. Commercially available cathepsin activity assay kits that exploit fluorogenic peptidyl substrates are widely used to measure individual cathepsin activities in biological samples. However, substrates marketed as cathepsin K, L and S specific were found to be only marginally specific or completely non-specific, and were hydrolyzed by various other cathepsins. Furthermore, the presence of highly potent endogenous inhibitors in biological samples and the lack of specificity of the substrates skew the measurements towards cathepsin B which is relatively resistant to endogenous inhibitors. Thus, data obtained using commercial substrate kits are to be interpreted with great caution.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-02-10
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0072579
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2012-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International