- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Creep behaviour of wood-plastic composites
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Creep behaviour of wood-plastic composites Chang, Feng-Cheng
Abstract
In this research, a series of experiments have been conducted, including mountain pine beetle attacked wood/plastic composite (MPB-WPC) prototype product development, dynamic mechanical analysis (DMA), short-term creep tests for master curve construction based on the time-temperature-stress superposition principle (TTSSP), and a long-term creep test. Moreover, a newly established stress-temperature incorporated creep (STIC) model, a modified Williams-Landel-Ferry (WLF) equation that incorporates the variables of temperature and stress, and a newly developed temperature-induced strain superposition (TISS) method were introduced. The MPB-WPC products showed definite potential as a value-added product option for MPB-attacked wood. The formulation affected the MPB-WPC products’ properties. The capacity of the products without a coupling agent was considerably inferior to the product formulations that included a coupling agent. The surface condition of the product was also influenced by the formulation. The dynamic mechanical properties were studied. The mechanical and viscoelastic behaviours of the MPB-WPC products were considerably influenced by the formulation of wood and plastic and the presence of a coupling agent, which can be attributed to modification of the interface property and the internal structure. The new STIC model smoothly introduced the effect of temperature into a conventional power law creep equation, and the model can be applied to predict the creep strain in which the effect of temperature is involved. Moreover, the temperature-stress hybrid shift factor and a modified WLF equation were studied; and, the parameters were successfully calibrated. Temperature-induced strain was observed in the results of the 220-day creep test. For a temperature-sensitive material like WPCs, the information obtained from conventional creep studies is not sufficient to predict long-term performance. The comparison between the long-term creep data and the master curves showed that master curves tended to overestimate the creep strain. Generally, the master curves constructed based on TTSSP cannot precisely predict the long-term creep strain, but can provide conservative estimations. To deal with the effect of fluctuating temperatures on the creep strain, the STIC model and the proposed temperature-induced strain superposition (TISS) method were established and employed. The additional temperature-induced creep strain and overall behaviour were successfully simulated.
Item Metadata
Title |
Creep behaviour of wood-plastic composites
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2011
|
Description |
In this research, a series of experiments have been conducted, including mountain pine beetle attacked wood/plastic composite (MPB-WPC) prototype product development, dynamic mechanical analysis (DMA), short-term creep tests for master curve construction based on the time-temperature-stress superposition principle (TTSSP), and a long-term creep test. Moreover, a newly established stress-temperature incorporated creep (STIC) model, a modified Williams-Landel-Ferry (WLF) equation that incorporates the variables of temperature and stress, and a newly developed temperature-induced strain superposition (TISS) method were introduced.
The MPB-WPC products showed definite potential as a value-added product option for MPB-attacked wood. The formulation affected the MPB-WPC products’ properties. The capacity of the products without a coupling agent was considerably inferior to the product formulations that included a coupling agent. The surface condition of the product was also influenced by the formulation.
The dynamic mechanical properties were studied. The mechanical and viscoelastic behaviours of the MPB-WPC products were considerably influenced by the formulation of wood and plastic and the presence of a coupling agent, which can be attributed to modification of the interface property and the internal structure.
The new STIC model smoothly introduced the effect of temperature into a conventional power law creep equation, and the model can be applied to predict the creep strain in which the effect of temperature is involved. Moreover, the temperature-stress hybrid shift factor and a modified WLF equation were studied; and, the parameters were successfully calibrated.
Temperature-induced strain was observed in the results of the 220-day creep test. For a temperature-sensitive material like WPCs, the information obtained from conventional creep studies is not sufficient to predict long-term performance. The comparison between the long-term creep data and the master curves showed that master curves tended to overestimate the creep strain. Generally, the master curves constructed based on TTSSP cannot precisely predict the long-term creep strain, but can provide conservative estimations.
To deal with the effect of fluctuating temperatures on the creep strain, the STIC model and the proposed temperature-induced strain superposition (TISS) method were established and employed. The additional temperature-induced creep strain and overall behaviour were successfully simulated.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-10-24
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 3.0 Unported
|
DOI |
10.14288/1.0072385
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2011-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 3.0 Unported