- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Pancreatic ductal-derived mesenchymal stem cells :...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Pancreatic ductal-derived mesenchymal stem cells : their distribution, characterization and cytotoxic effect on pancreatic cancer cells Roshan Moniri, Mani
Abstract
Mesenchymal stem cells (MSCs) have attracted significant attention in cancer research as a result of their accessibility, tumor-oriented homing capacity, and the feasibility of auto-transplantation. This study detected the sensitivity of pancreatic cancer cell lines (PCCs) to pancreatic-derived, engineered MSCs under different culture conditions. Pancreatic ductal tissue was extracted from adult human pancreas. MSCs were derived and expanded ex-vivo and verified to fulfil criteria for human MSCs according to the guidelines of the International Society for Cellular Therapy. MSCs were analyzed for distribution and migratory capacity to the site of pancreas and PCCs in in vivo and in vitro models, and found to have homing capacity to the pancreas and towards PCCs (MSCs were attracted to all PCCs compared to normal human A1F8 cells and they displayed significant attraction to the media obtained from cancer cells compared to normal media (p<0.05)). PCCs (BXPC3, ASPC1, Panc-1, TRM6 and HP62) were analyzed by FACS for TNF-α Related Apoptosis Inducing Ligand (TRAIL) receptors. MSCs engineered with non-secreting TRAIL (MSCnsTRAIL) and secreting TRAIL (MSCstTRAIL) and PTEN (MSCPTEN) were used for both direct and indirect co-cultures. TRAIL/PTEN expression was assessed by both ELISA and western blot analysis; higher molecular weight was observed in the MSCnsTRAIL (56kDA) compared with MSCstTRAIL (26kDa). The TRAIL content of supernanatats from MSCstTRAIL was significantly higher than MSCnsTRAIL (p<0.05). PTEN-RFP fusion protein showed a higher molecular weight of 74 kDa in comparison with endogenous PTEN (47 kDa). A real time detection of MSCs cytotoxicity on PCCs displayed proportional cancer cell death to the ratio of conditioned media used from MSCnsTRAIL, MSCstTRAIL, and MSCPTEN. Naive MSCs exhibit intrinsic cytotoxic effect on pancreatic cancer cells and this effect was potentiated by TRAIL/PTEN-engineering. This study provides a practical platform for the development of MSC-based therapy for pancreatic cancer.
Item Metadata
Title |
Pancreatic ductal-derived mesenchymal stem cells : their distribution, characterization and cytotoxic effect on pancreatic cancer cells
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2012
|
Description |
Mesenchymal stem cells (MSCs) have attracted significant attention in cancer research as a result of their accessibility, tumor-oriented homing capacity, and the feasibility of auto-transplantation. This study detected the sensitivity of pancreatic cancer cell lines (PCCs) to pancreatic-derived, engineered MSCs under different culture conditions. Pancreatic ductal tissue was extracted from adult human pancreas. MSCs were derived and expanded ex-vivo and verified to fulfil criteria for human MSCs according to the guidelines of the International Society for Cellular Therapy. MSCs were analyzed for distribution and migratory capacity to the site of pancreas and PCCs in in vivo and in vitro models, and found to have homing capacity to the pancreas and towards PCCs (MSCs were attracted to all PCCs compared to normal human A1F8 cells and they displayed significant attraction to the media obtained from cancer cells compared to normal media (p<0.05)). PCCs (BXPC3, ASPC1, Panc-1, TRM6 and HP62) were analyzed by FACS for TNF-α Related Apoptosis Inducing Ligand (TRAIL) receptors. MSCs engineered with non-secreting TRAIL (MSCnsTRAIL) and secreting TRAIL (MSCstTRAIL) and PTEN (MSCPTEN) were used for both direct and indirect co-cultures. TRAIL/PTEN expression was assessed by both ELISA and western blot analysis; higher molecular weight was observed in the MSCnsTRAIL (56kDA) compared with MSCstTRAIL (26kDa). The TRAIL content of supernanatats from MSCstTRAIL was significantly higher than MSCnsTRAIL (p<0.05). PTEN-RFP fusion protein showed a higher molecular weight of 74 kDa in comparison with endogenous PTEN (47 kDa). A real time detection of MSCs cytotoxicity on PCCs displayed proportional cancer cell death to the ratio of conditioned media used from MSCnsTRAIL, MSCstTRAIL, and MSCPTEN. Naive MSCs exhibit intrinsic cytotoxic effect on pancreatic cancer cells and this effect was potentiated by TRAIL/PTEN-engineering. This study provides a practical platform for the development of MSC-based therapy for pancreatic cancer.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-10-23
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0071828
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2012-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International