UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

MEMS pressure, temperature and conductivity sensors for high temperature and harsh environments Rashidi Mohammadi, Abdolreza


Kraft pulp digesters have been used to convert wood chips into pulp for manufacturing a wide variety of paper products. Inside a kraft digester, chemical reactions remove lignin from their wood matrix in a caustic environment (pH~13.5, 170°C, 2MPa). Data on actual internal operating conditions in a kraft digester is needed to optimize kraft digester operation and obtain maximum production quality. Currently, this information is limited to selected static locations on the periphery of the digester. The objective of this thesis is to develop miniature temperature, pressure, and liquid conductivity sensors for use in autonomous flow-following SmartChips to measure kraft process variables within the digester during their passage through the process. Combined capacitive pressure and temperature sensors were fabricated by bonding silicon and Pyrex chips using a new polymeric gap-controlling layer and a high temperature adhesive. A simple chip bonding technique involving insertion of the adhesive into the gap between two chips was developed. A silicon dioxide layer and a thin layer of Parylene were deposited to passivate the pressure sensor diaphragm against the caustic environment in kraft digesters. The sensors were characterized at both high temperatures and pressures and no signs of corrosion could be identified on the sensors. Integrated piezoresistive pressure and temperature sensors consisting of a square silicon diaphragm and high resistance piezoresistors were developed. A new Parylene and silicone conformal coating process were developed to passivate the pressure sensors against the caustic environment. The sensors were characterized up to 2MPa and 180°C in an environmental chamber. The sensors’ resistances were measured before and after testing in a kraft pulping cycle and showed no change in their values. SEM pictures and topographical surface analyses were also performed before and after pulp liquor exposure and showed no observable changes. Combined liquid conductivity and temperature sensor packages consisting of a platinum resistance temperature detector (RTD) and a four-electrode conductivity sensor formed by stainless steel electrodes and installed on a polyetheretherketone (PEEK) enclosure were developed. The sensors were characterized up to 180°C at NaOH concentrations of 10-100g/l in the presence of wood chips and survived with no signs of corrosion.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International