UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Mechanics and dynamics of thin wall machining Eksioglu, Muhittin Caner


Peripheral milling of thin walled aerospace components takes considerable amount of machining time as blank blocks are cut down to thin webs under excessive structural oscillations during the process. Unstable chatter vibrations and stable forced vibrations cause poor surface finish on the machined part. Predicting the process mechanics in advance eliminates the time consuming trial and error approach in reducing the vibrations which are within the tolerance limits of the part. This thesis presents the mathematical modeling of the peripheral milling of the thin walls with helical end mills. The cutting forces, vibrations and dimensional form errors left on the finish surface are predicted under stable but forced vibration conditions. The chatter stability diagram of the operation is predicted by using both frequency and semi-discrete time domain models. The relative vibrations between the flexible part and slender end mill are consi-dered. The tool and the workpiece are discretized along the contact axis to include effect of varying cutting forces and structural dynamics. The differential milling forces are evaluated from the static chip loads contributed by the rigid body motion of the milling operation, and dynamic chip loads caused by the relative vibrations between the flexible tool and flexible thin part. The different cylindrical end mill geometries with regular and non-uniform pitch and helix angles, and low speed process damping effects are included in the dynamic force model. The dynamic properties of the flexible structures are represented by expe-rimentally evaluated modal model in order to reduce the number of linear, periodic, delayed differential equations solved in frequency and time domain computations. The periodic, delayed differential equations are solved by the semi discrete time domain method to predict the amplitude of vibrations and forces. The equations of motion are simplified to constant coefficient type ordinary differential equations, and surface location errors are calculated by frequency domain solver. Chatter stability lobes are calculated using semi discrete time domain and fre-quency domain methods. Chatter stability solvers are validated by conducting chatter tests for roughing and finishing stages of thin walled aluminum part at high cutting speeds, and low speed machining of rigid steel block.

Item Citations and Data


Attribution 3.0 Unported