UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Pumping performance increase through the addition of turbulent drag-reducing polymers to pulp fibre suspensions Abuyousef, Imad Ayesh


The addition of a small amount of long chain polymers to a turbulent fluid is known to reduce the wall shear stress and drag. Similarly, the addition of pulp fibres to a turbulent suspension is also turbulent-drag reducing despite pulp fibres having a length scale that is 1000 times larger than polymer molecules. The mechanism of drag reduction and its impact on centrifugal pump performance is poorly understood, especially when there is a combination of polymer and fibres in suspension. Centrifugal (slurry) pump performance was measured as a function of pulp fibre and PAM polymer concentration. Both the pump best efficiency and maximum head rise were greater when pumping modest concentrations of polymer solutions and low consistency pulp fibre than pure water. We measured an efficiency increase of 22 percent and a maximum head increase of 4.3 percent with the addition of 150 ppm PAM polymer over that of pure water. We measured an increase of 8 percent and 2.3 percent in pump efficiency and maximum head coefficient, respectively, with 2 percent pulp fibres over that of water alone. With both 1 percent consistency pulp fibres and 100 ppm of PAM polymers, we measured a 12 percent increase in efficiency over that of pulp fibre alone. With both 2 percent consistency pulp fibres and 100 ppm of PAM polymers present, we measure an 8 percent increase in efficiency over that of pulp suspension alone. The reasons for the increased pump efficiency with addition of additives is not known but are thought to be due to the turbulent-drag-reducing properties associated with flow of these suspensions.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International