UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Asymptotic and numerical modeling of magnetic field profiles in superconductors with rough boundaries and multi-component gas transport in PEM fuel cells Lindstrom, Michael Robert

Abstract

This thesis is a combination of two research projects in applied mathematics, which use the applied math techniques of numerical and asymptotic analysis to study real-world problems. The first problem is in superconductivity. This section is motivated by recent experimental results at the Paul Sherrer Institute. Here, we need to determine how the surface roughness of a superconductor influences the penetration properties of an externally applied magnetic field. We apply asymptotic analysis to study the influences, and then verify the accuracy - even going well-beyond the limits of the asymptotics - by means of computational approximations. Through our analysis, we are able to offer insights into the experimental results, and we discover the influence of a few particular surface geometries. The second problem is in gas diffusion. The application for this study is in fuel cells. We compare two gas diffusion models in a particular fuel cell component, the gas diffusion layer, which allows transport of reactant gases from channels to reaction sites. These two models have very different formulations and we explore the question of how they differ qualitatively in computing concentration changes of gas species. We make use of asymptotic analysis, but also use computational methods to verify the asymptotics and to study the models more deeply. Our work leads us to a deeper understanding of the two models, both in how they differ and what similarities they share.

Item Citations and Data

License

Attribution-NoDerivs 3.0 Unported

Usage Statistics