UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Adaptive contextual regularization for energy minimization based image segmentation Rao, Josna


Image segmentation techniques are predominately based on parameter-laden optimization processes. The segmentation objective function traditionally involves parameters (i.e. weights) that need to be tuned in order to balance the underlying competing cost terms of image data fidelity and contour regularization. Conventionally, the associated parameters are set through tedious trial and error procedures and kept constant over the image. However, spatially varying structural characteristics, such as object curvature, combined with varying noise and imaging artifacts, significantly complicate the selection process of segmentation parameters. This thesis contributes to the field of image segmentation by proposing methods for spatially adapting the balance between regularization and data fidelity in energy minimization frameworks in an autonomous manner. We first proposed a method for determining the globally-optimum spatially adaptive regularization weight based on dynamic programming. We investigated this weight with a basic minimum-path segmentation framework. Our findings indicated that the globally-optimum weight is not necessarily the best weight as perceived by users, and resulted in poorer segmentation accuracy, particularly for high noise images. We then investigated a more intuitive approach that adapts the regularization weight based on the underlying local image characteristics to more properly address noisy and structurally important regions. This method, which we termed contextual (data-driven) weighting, involved the use of a robust structural cue to prevent excessive regularization of trusted (i.e. low noise) high curvature image regions and an edge evidence measure, where both measures are gated by a measure of image quality based on the concept of spectral flatness. We incorporated our proposed regularization weighting into four major segmentation frameworks that range from discrete to continuous methods: a minimum-path approach [9], Graph Cuts [14], Active Contours Without Edges [24], and a contextual Mumford-Shah based approach [38]. Our methods were validated on a variety of natural and medical image databases and compared against the globally-optimum weight approach and to two alternate approaches: the best possible (least-error) spatially-fixed regularization weight, and the most closely related data-driven spatially adaptive regularization method. In addition, we incorporated existing texture-based contextual cues to demonstrate the applicability of the data-driven weights.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International