UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Carbon, plant and microbial dynamics in Low-Arctic tundra Deslippe, Julie Royann

Abstract

Anthropogenic climate change threatens the stability of Arctic C stores. Soil microbes are central to the C balance of ecosystems as decomposers of soil organic matter and as determinants of plant diversity. In four experiments in the tundra, I address critical gaps in our understanding of the role of soil microbial communities in the response of an Arctic ecosystem to climate change. My objectives were 1) to asses the role of mycorrhizal networks (MN) in plant-plant interactions; 2) to determine the effects of warming and fertilization on the ectomycorrhizal (ECM) community of Betula nana; 3) to determine the effect of warming on soil fungi and bacteria over time; 4) to assess the role of the mycorrhizal symbiosis in C-allocation to rhizosphere organisms. I show that MNs exist in tundra and facilitate transfer of C among Betula nana individuals, but not among the other plants examined. C-transfer among Betula nana pairs through MNs represented 5.5 ± 2.2% of photosynthesis, total belowground transfer of C was 10.7 ± 2.1%. My results suggest that C-transfer through MNs may alter plant interactions, increasing competition by Betula nana, and that this will be enhanced with warming. I show that warming leads to a significant increase of fungi with proteolytic capacity, particularly Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. My findings suggest that warming will alter the ECM community and nutrient cycling, which may facilitate Betula nana in tundra. I show that warming leads to a 28% and 22% reduction in the richness of soil fungi and bacteria in tundra, respectively, as well as corresponding declines in diversity. My data agree with reductions in plant community richness with warming at this site, and suggest that warming will reduce total community diversity in tundra. I show that Gram-negative bacteria and a species-specific community of mycorrhizal fungi are the primary consumers of rhizodeposit C among tundra shrubs. Together, these results strongly suggest that soil microbes play a critical role in plant community dynamics and C-cycling in Arctic tundra, and that this role will become increasingly important as climate warms.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-ShareAlike 3.0 Unported

Usage Statistics