- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Thermoregulation in the leatherback sea turtle (Dermochelys...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Thermoregulation in the leatherback sea turtle (Dermochelys coriacea) Bostrom, Brian Lee
Abstract
Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of ≥ 8 °C in sub-polar waters and ≤ 4 °C in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved. Using a cylindrical model of a leatherback I investigated the extent to which heat production by muscle activity during variation of swim speed could be used in a leatherback’s thermal strategy. Drag force of a full scale cast of a leatherback was measured in a low velocity wind tunnel to obtain an estimate of the metabolic cost needed to offset drag. It is apparent, from this modelling, that heat flux from the body and flippers, activity and body and water temperatures are important variables to measure in order to fully classify the thermoregulatory response of live leatherbacks. Using captive juvenile leatherbacks of 16 and 37 kg I show for the first time that leatherbacks are indeed capable of thermoregulation. In cold water (< 25 °C), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3 °C was maintained between body and environment. In warm water (25 – 31 °C), turtles were inactive and heat loss through their plastron, carapace and flippers increased, minimizing the thermal gradient (0.5 °C). In juvenile leatherbacks, heat gain is controlled behaviourally through activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Using a scaling model, I show that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2 °C in cold sub-polar waters. Thus, by employing both physiological and behavioural mechanisms, adult leatherbacks are able to keep warm while foraging in cold sub-polar waters and to prevent overheating in a tropical environment, greatly expanding their range relative to other marine turtles.
Item Metadata
Title |
Thermoregulation in the leatherback sea turtle (Dermochelys coriacea)
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2009
|
Description |
Adult leatherback turtles (Dermochelys coriacea) exhibit thermal gradients between their bodies and the environment of ≥ 8 °C in sub-polar waters and ≤ 4 °C in the tropics. There has been no direct evidence for thermoregulation in leatherbacks although modelling and morphological studies have given an indication of how thermoregulation may be achieved. Using a cylindrical model of a leatherback I investigated the extent to which heat production by muscle activity during variation of swim speed could be used in a leatherback’s thermal strategy. Drag force of a full scale cast of a leatherback was measured in a low velocity wind tunnel to obtain an estimate of the metabolic cost needed to offset drag. It is apparent, from this modelling, that heat flux from the body and flippers, activity and body and water temperatures are important variables to measure in order to fully classify the thermoregulatory response of live leatherbacks. Using captive juvenile leatherbacks of 16 and 37 kg I show for the first time that leatherbacks are indeed capable of thermoregulation. In cold water (< 25 °C), flipper stroke frequency increased, heat loss through the plastron, carapace and flippers was minimized, and a positive thermal gradient of up to 2.3 °C was maintained between body and environment. In warm water (25 – 31 °C), turtles were inactive and heat loss through their plastron, carapace and flippers increased, minimizing the thermal gradient (0.5 °C). In juvenile leatherbacks, heat gain is controlled behaviourally through activity while heat flux is regulated physiologically, presumably by regulation of blood flow distribution. Using a scaling model, I show that a 300 kg adult leatherback is able to maintain a maximum thermal gradient of 18.2 °C in cold sub-polar waters. Thus, by employing both physiological and behavioural mechanisms, adult leatherbacks are able to keep warm while foraging in cold sub-polar waters and to prevent overheating in a tropical environment, greatly expanding their range relative to other marine turtles.
|
Extent |
1110664 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-09-03
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0070833
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2009-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International