- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Machine learning-based multi-robot cooperative transportation...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Machine learning-based multi-robot cooperative transportation of objects Siriwardana, Pallege Gamini Dilupa
Abstract
Multi robot cooperative transportation is an important research area in the multi robot domain. In the process of object transportation, several autonomous robots navigate cooperatively in either a static or a dynamic environment to transport an object to a goal location and orientation. The environment may consist of both fixed and removable obstacles and it will be subject to uncertainty and unforeseen changes within the environment. Furthermore, more than one robot may be required in a cooperative mode for handling heavy and large objects. These are some of the challenges addressed in the present thesis. This thesis develops a machine learning approach and investigates relevant research issues for object transportation utilizing cooperative and autonomous multiple mobile robots. It makes significant original contributions in distributed multi robot coordination and self deterministic learning for robot decision making, and comes up with an optimal solution to the action selection conflicts of the robots in the cooperative system. This will help to improve the real time performance and robustness of the system. Also, the thesis develops a new method for object and obstacle identification in complex environments using a laser range finder, which is more realistic than the available methods. A new algorithm for object pose estimation algorithm is developed, enabling a robot to identify the objects and obstacles in a multi-robot environment by utilizing the laser range finder and color blob tracking. The thesis develops a fully distributed hierarchical multi-robot architecture for enhanced coordination among robots in a dynamic and unknown environment. It strives to improve the real time performance and robustness. The system consists with three layers. By combining two popular artificial intelligence (Al) techniques such as learning and behavior based decision making, the developed architecture is expected to facilitate effective autonomous operation of cooperative multi-robot systems in a dynamically changing, unstructured, and unknown environment.
Item Metadata
Title |
Machine learning-based multi-robot cooperative transportation of objects
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2009
|
Description |
Multi robot cooperative transportation is an important research area in the multi robot
domain. In the process of object transportation, several autonomous robots navigate cooperatively in either a static or a dynamic environment to transport an object to a goal location and orientation. The environment may consist of both fixed and removable obstacles and it will be subject to uncertainty and unforeseen changes within the environment. Furthermore, more than one robot may be required in a cooperative mode
for handling heavy and large objects. These are some of the challenges addressed in the
present thesis.
This thesis develops a machine learning approach and investigates relevant research
issues for object transportation utilizing cooperative and autonomous multiple mobile
robots. It makes significant original contributions in distributed multi robot coordination and self deterministic learning for robot decision making, and comes up with an optimal solution to the action selection conflicts of the robots in the cooperative system. This will help to improve the real time performance and robustness of the system. Also, the thesis develops a new method for object and obstacle identification in complex environments
using a laser range finder, which is more realistic than the available methods. A new
algorithm for object pose estimation algorithm is developed, enabling a robot to identify the objects and obstacles in a multi-robot environment by utilizing the laser range finder and color blob tracking.
The thesis develops a fully distributed hierarchical multi-robot architecture for enhanced coordination among robots in a dynamic and unknown environment. It strives to improve the real time performance and robustness. The system consists with three layers. By combining two popular artificial intelligence (Al) techniques such as learning and behavior based decision making, the developed architecture is expected to facilitate effective autonomous operation of cooperative multi-robot systems in a dynamically changing, unstructured, and unknown environment.
|
Extent |
3574394 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-11-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0068136
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2009-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International