- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Implementation of algorithms to determine the capacitance...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Implementation of algorithms to determine the capacitance sensitivity of interconnect parasitics in the Magic VLSI layout tool Huang, Nick Kuan-Hsiang
Abstract
VLSI interconnect capacitance is becoming more significant and also increasingly subject to process variation in the deep submicron regime. A new set of capacitance models is implemented in the Magic VLSI layout tool to improve the capacitance accuracy based on 2.5D capacitance models. This involves a new technology file, equations, and search algorithms. In addition, a simple technique to extract from layout the sensitivity of interconnect parasitic capacitance to linewidth process variation is proposed based on the new capacitance models and implemented in Magic. The derivative of each extracted capacitance with respect to linewidth variation in every level is obtained. Coincident edges in layout result in distinct “shrinking” and “bloating” derivatives. The derivatives therefore form a gradient that may be multiplied by a vector of the variations on each level to give the total expected deviation from nominal capacitance. The gradient allows the process sensitivity of each capacitance to be determined by simply inspecting the netlist. In the end, the impact of process variation is simulated in a crosstalk application to emphasize the necessity of process variation awareness.
Item Metadata
Title |
Implementation of algorithms to determine the capacitance sensitivity of interconnect parasitics in the Magic VLSI layout tool
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2009
|
Description |
VLSI interconnect capacitance is becoming more significant and also increasingly subject to process variation in the deep submicron regime. A new set of capacitance models is implemented in the Magic VLSI layout tool to improve the capacitance accuracy based on 2.5D capacitance models. This involves a new technology file, equations, and search algorithms. In addition, a simple technique to extract from layout the sensitivity of interconnect parasitic capacitance to linewidth process variation is proposed based on the new capacitance models and implemented in Magic. The derivative of each extracted capacitance with respect to linewidth variation in every level is obtained. Coincident edges in layout result in distinct “shrinking” and “bloating” derivatives. The derivatives therefore form a gradient that may be multiplied by a vector of the variations on each level to give the total expected deviation from nominal capacitance. The gradient allows the process sensitivity of each capacitance to be determined by simply inspecting the netlist. In the end, the impact of process variation is simulated in a crosstalk application to emphasize the necessity of process variation awareness.
|
Extent |
3212010 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-09-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0067690
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2009-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International